|
David Roche, Debora Gil, & Jesus Giraldo. (2012). "Assessing agonist efficacy in an uncertain Em world " In A. Christopoulus and M. Bouvier (Ed.), 40th Keystone Symposia on mollecular and celular biology (79). Keystone Symposia.
Abstract: The operational model of agonism has been widely used for the analysis of agonist action since its formulation in 1983. The model includes the Em parameter, which is defined as the maximum response of the system. The methods for Em estimation provide Em values not significantly higher than the maximum responses achieved by full agonists. However, it has been found that that some classes of compounds as, for instance, superagonists and positive allosteric modulators can increase the full agonist maximum response, implying upper limits for Em and thereby posing doubts on the validity of Em estimates. Because of the correlation between Em and operational efficacy, τ, wrong Em estimates will yield wrong τ estimates.
In this presentation, the operational model of agonism and various methods for the simulation of allosteric modulation will be analyzed. Alternatives for curve fitting will be presented and discussed.
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2012). "Error Analysis for Lucas-Kanade Based Schemes " In 9th International Conference on Image Analysis and Recognition (Vol. 7324, pp. 184–191). Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg.
Abstract: Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.
Keywords: Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance
|
|
|
Albert Andaluz, Francesc Carreras, Cristina Santa Marta, & Debora Gil. (2012). "Myocardial torsion estimation with Tagged-MRI in the OsiriX platform " In Wiro Niessen(Erasmus MC) and Marc Modat(UCL) (Ed.), ISBI Workshop on Open Source Medical Image Analysis software. IEEE.
Abstract: Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es
|
|
|
A. M. Here, B. C. Lopez, Debora Gil, J. J. Camarero, & Jordi Martinez-Vilalta. (2013). "A new software to analyse wood anatomical features in conifer species " In International Symposium on Wood Structure in Plant Biology and Ecology.
Abstract: International Symposium on Wood Structure in Plant Biology and Ecology
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2013). "Volumetric Anatomical Parameterization and Meshing for Inter-patient Liver Coordinate System Deffinition " In 16th International Conference on Medical Image Computing and Computer Assisted Intervention.
|
|
|
Ferran Poveda, Debora Gil, & Enric Marti. (2012). "Multi-resolution DT-MRI cardiac tractography " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 270–277). Springer Berlin Heidelberg.
Abstract: Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.
|
|
|
Debora Gil, Agnes Borras, Ruth Aris, Mariano Vazquez, Pierre Lafortune, & Guillame Houzeaux. (2012). "What a difference in biomechanics cardiac fiber makes " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 253–260). Springer Berlin Heidelberg.
Abstract: Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2012). "A medial map capturing the essential geometry of organs " In ISBI Workshop on Open Source Medical Image Analysis software (1691 - 1694). IEEE.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume
Keywords: Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction
|
|
|
Debora Gil, Jaume Garcia, Mariano Vazquez, Ruth Aris, & Guilleaume Houzeaux. (2008). "Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function " In 8th World Congress on Computational Mechanichs (WCCM8).
Abstract: Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
Keywords: Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.
|
|
|
C. Santa-Marta, Jaume Garcia, A. Bajo, J.J. Vaquero, M. Ledesma-Carbayo, & Debora Gil. (2008)." Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images" In S. A. Roberto hornero (Ed.), XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica (352–353).
Abstract: It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.
|
|