|
Ernest Valveny, & Enric Marti. (1999). "Application of deformable template matching to symbol recognition in hand-written architectural draw " In Proceedings of the Fifth International Conference on. Bangalore (India).
Abstract: We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.
|
|
|
Ernest Valveny, & Enric Marti. (1999)." Recognition of lineal symbols in hand-written drawings using deformable template matching" In Proceedings of the VIII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes.
|
|
|
Ernest Valveny, & Enric Marti. (1997)." Dimensions analysis in hand-drawn architectural drawings" In (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis (pp. 90–91). CVC-UAB.
|
|
|
Ernest Valveny, Ricardo Toledo, Ramon Baldrich, & Enric Marti. (2002)." Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching" In Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 (502–507).
|
|
|
Aura Hernandez-Sabate, Debora Gil, David Roche, Monica M. S. Matsumoto, & Sergio S. Furuie. (2011). "Inferring the Performance of Medical Imaging Algorithms " In Pedro Real, Daniel Diaz-Pernil, Helena Molina-Abril, Ainhoa Berciano, & Walter Kropatsch (Eds.), 14th International Conference on Computer Analysis of Images and Patterns (Vol. 6854, pp. 520–528). L. Berlin: Springer-Verlag Berlin Heidelberg.
Abstract: Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
Keywords: Validation, Statistical Inference, Medical Imaging Algorithms.
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2011). "An inference model for analyzing termination conditions of Evolutionary Algorithms " In 14th Congrès Català en Intel·ligencia Artificial (pp. 216–225).
Abstract: In real-world problems, it is mandatory to design a termination condition for Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown optimum. Distribution-based quantities are good candidates as far as suitable parameters are used. A main limitation for application to real-world problems is that such parameters strongly depend on the topology of the objective function, as well as, the EA paradigm used.
We claim that the termination problem would be fully solved if we had a model measuring to what extent a distribution-based quantity asymptotically behaves like the solution accuracy. We present a regression-prediction model that relates any two given quantities and reports if they can be statistically swapped as termination conditions. Our framework is applied to two issues. First, exploring if the parameters involved in the computation of distribution-based quantities influence their asymptotic behavior. Second, to what extent existing distribution-based quantities can be asymptotically exchanged for the accuracy of the EA solution.
Keywords: Evolutionary Computation Convergence, Termination Conditions, Statistical Inference
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2011). "Using statistical inference for designing termination conditions ensuring convergence of Evolutionary Algorithms " In 11th European Conference on Artificial Life.
Abstract: A main challenge in Evolutionary Algorithms (EAs) is determining a termination condition ensuring stabilization close to the optimum in real-world applications. Although for known test functions distribution-based quantities are good candidates (as far as suitable parameters are used), in real-world problems an open question still remains unsolved. How can we estimate an upper-bound for the termination condition value ensuring a given accuracy for the (unknown) EA solution?
We claim that the termination problem would be fully solved if we defined a quantity (depending only on the EA output) behaving like the solution accuracy. The open question would be, then, satisfactorily answered if we had a model relating both quantities, since accuracy could be predicted from the alternative quantity. We present a statistical inference framework addressing two topics: checking the correlation between the two quantities and defining a regression model for predicting (at a given confidence level) accuracy values from the EA output.
|
|
|
Ferran Poveda, Debora Gil, Albert Andaluz, & Enric Marti. (2011). "Multiscale Tractography for Representing Heart Muscular Architecture " In In MICCAI 2011 Workshop on Computational Diffusion MRI.
Abstract: Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. Although the muscular architecture of the heart has been debated by countless researchers, the controversy is still alive. Diffusion Tensor MRI, DT-MRI, is a unique imaging technique for computational validation of the muscular structure of the heart. By the complex arrangement of myocites, existing techniques can not provide comprehensive descriptions of the global muscular architecture. In this paper we introduce a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and indicate a global helical organization
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2011). "A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth " In IEEE International Conference on Computer Vision – Workshops (pp. 2042–2049). Barcelona (Spain): IEEE.
Abstract: Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.
Keywords: IEEE International Conference on Computer Vision – Workshops
|
|
|
Andrew Nolan, Daniel Serrano, Aura Hernandez-Sabate, Daniel Ponsa, & Antonio Lopez. (2013). "Obstacle mapping module for quadrotors on outdoor Search and Rescue operations " In International Micro Air Vehicle Conference and Flight Competition.
Abstract: Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.
Keywords: UAV
|
|