|
Ferran Poveda, Jaume Garcia, Enric Marti, & Debora Gil. (2010). "Validation of the myocardial architecture in DT-MRI tractography " In Medical Image Computing in Catalunya: Graduate Student Workshop (pp. 29–30). Girona (Spain).
Abstract: Deep understanding of myocardial structure may help to link form and funcion of the heart unraveling crucial knowledge for medical and surgical clinical procedures and studies. In this work we introduce two visualization techniques based on DT-MRI streamlining able to decipher interesting properties of the architectural organization of the heart.
|
|
|
Petia Radeva, A.Amini, J.Huang, & Enric Marti. (1996). "Deformable B-Solids and Implicit Snakes for Localization and Tracking of SPAMM MRI-Data " In Workshop on Mathematical Methods in Biomedical Image Analysis (pp. 192–201). IEEE Computer Society.
Abstract: To date, MRI-SPAMM data from different image slices have been analyzed independently. In this paper, we propose an approach for 3D tag localization and tracking of SPAMM data by a novel deformable B-solid. The solid is defined in terms of a 3D tensor product B-spline. The isoparametric curves of the B-spline solid have special importance. These are termed implicit snakes as they deform under image forces from tag lines in different image slices. The localization and tracking of tag lines is performed under constraints of continuity and smoothness of the B-solid. The framework unifies the problems of localization, and displacement fitting and interpolation into the same procedure utilizing B-spline bases for interpolation. To track motion from boundaries and restrict image forces to the myocardium, a volumetric model is employed as a pair of coupled endocardial and epicardial B-spline surfaces. To recover deformations in the LV an energy-minimization problem is posed where both tag and ...
|
|
|
Josep Llados, Ernest Valveny, Gemma Sanchez, & Enric Marti. (2003). A Case Study of Pattern Recognition: Symbol Recognition in Graphic Documentsa In Proceedings of Pattern Recognition in Information Systems (pp. 1–13). ICEIS Press.
|
|
|
Josep Llados, Jaime Lopez-Krahe, Gemma Sanchez, & Enric Marti. (2000)." Interprétation de cartes et plans par mise en correspondance de graphes de attributs" In 12 Congrès Francophone AFRIF–AFIA (Vol. 3, pp. 225–234).
|
|
|
Antonio Esteban Lansaque, Carles Sanchez, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2016). "Stable Airway Center Tracking for Bronchoscopic Navigation " In 28th Conference of the international Society for Medical Innovation and Technology.
Abstract: Bronchoscopists use X‐ray fluoroscopy to guide bronchoscopes to the lesion to be biopsied without any kind of incisions. Reducing exposure to X‐ray is important for both patients and doctors but alternatives like electromagnetic navigation require specific equipment and increase the cost of the clinical procedure. We propose a guiding system based on the extraction of airway centers from intra‐operative videos. Such anatomical landmarks could be
matched to the airway centerline extracted from a pre‐planned CT to indicate the best path to the lesion. We present an extraction of lumen centers
from intra‐operative videos based on tracking of maximal stable regions of energy maps.
|
|
|
Carles Sanchez, Debora Gil, T. Gache, N. Koufos, Marta Diez-Ferrer, & Antoni Rosell. (2016). "SENSA: a System for Endoscopic Stenosis Assessment " In 28th Conference of the international Society for Medical Innovation and Technology.
Abstract: Documenting the severity of a static or dynamic Central Airway Obstruction (CAO) is crucial to establish proper diagnosis and treatment, predict possible treatment effects and better follow-up the patients. The subjective visual evaluation of a stenosis during video-bronchoscopy still remains the most common way to assess a CAO in spite of a consensus among experts for a need to standardize all calculations [1].
The Computer Vision Center in cooperation with the «Hospital de Bellvitge», has developed a System for Endoscopic Stenosis Assessment (SENSA), which computes CAO directly by analyzing standard bronchoscopic data without the need of using other imaging tecnologies.
|
|
|
Debora Gil, Jaume Garcia, Aura Hernandez-Sabate, & Enric Marti. (2010). "Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy " In 8th Medical Imaging (Vol. 7623, 304). SPIE.
Abstract: Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
|
|
|
Sergio Vera, Debora Gil, & Miguel Angel Gonzalez Ballester. (2014). "Anatomical parameterization for volumetric meshing of the liver " In SPIE – Medical Imaging (Vol. 9036).
Abstract: A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values
at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites
of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the
volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient’s liver, and allows comparing livers from several patients in a common framework of reference.
Keywords: Coordinate System; Anatomy Modeling; Parameterization
|
|
|
Ferran Poveda, Debora Gil, & Enric Marti. (2012). "Multi-resolution DT-MRI cardiac tractography " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 270–277). Springer Berlin Heidelberg.
Abstract: Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.
|
|
|
Debora Gil, Agnes Borras, Ruth Aris, Mariano Vazquez, Pierre Lafortune, & Guillame Houzeaux. (2012). "What a difference in biomechanics cardiac fiber makes " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 253–260). Springer Berlin Heidelberg.
Abstract: Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
|
|