|
David Roche, Debora Gil, & Jesus Giraldo. (2013). "Detecting loss of diversity for an efficient termination of EAs " In 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 561–566).
Abstract: Termination of Evolutionary Algorithms (EA) at its steady state so that useless iterations are not performed is a main point for its efficient application to black-box problems. Many EA algorithms evolve while there is still diversity in their population and, thus, they could be terminated by analyzing the behavior some measures of EA population diversity. This paper presents a numeric approximation to steady states that can be used to detect the moment EA population has lost its diversity for EA termination. Our condition has been applied to 3 EA paradigms based on diversity and a selection of functions
covering the properties most relevant for EA convergence.
Experiments show that our condition works regardless of the search space dimension and function landscape.
Keywords: EA termination; EA population diversity; EA steady state
|
|
|
Debora Gil, Agnes Borras, Manuel Ballester, Francesc Carreras, Ruth Aris, Manuel Vazquez, et al. (2011). "MIOCARDIA: Integrating cardiac function and muscular architecture for a better diagnosis " In Association for Computing Machinery (Ed.), 14th International Symposium on Applied Sciences in Biomedical and Communication Technologies. Barcelona, Spain.
Abstract: Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. The MIOCARDIA project is a multidisciplinary project in cooperation with l'Hospital de la Santa Creu i de Sant Pau, Clinica la Creu Blanca and Barcelona Supercomputing Center. The ultimate goal of this project is defining a computational model of the myocardium. The model takes into account the deep interrelation between the anatomy and the mechanics of the heart. The paper explains the workflow of the MIOCARDIA project. It also introduces a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and provides evidences of a global helical organization.
|
|
|
Debora Gil, Agnes Borras, Sergio Vera, & Miguel Angel Gonzalez Ballester. (2013). "A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 334–343). Springer Berlin Heidelberg.
Abstract: Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.
Keywords: Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation
|
|
|
Debora Gil, Antonio Esteban Lansaque, Sebastian Stefaniga, Mihail Gaianu, & Carles Sanchez. (2019). "Data Augmentation from Sketch " In International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (Vol. 11840, pp. 155–162).
Abstract: State of the art machine learning methods need huge amounts of data with unambiguous annotations for their training. In the context of medical imaging this is, in general, a very difficult task due to limited access to clinical data, the time required for manual annotations and variability across experts. Simulated data could serve for data augmentation provided that its appearance was comparable to the actual appearance of intra-operative acquisitions. Generative Adversarial Networks (GANs) are a powerful tool for artistic style transfer, but lack a criteria for selecting epochs ensuring also preservation of intra-operative content.
We propose a multi-objective optimization strategy for a selection of cycleGAN epochs ensuring a mapping between virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives.
Keywords: Data augmentation; cycleGANs; Multi-objective optimization
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In ESC Congress. ,Sweden (EU).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In 3rd International workshop on International Workshop on Functional Imaging and Modeling of the Heart (pp. 65–74).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
Debora Gil, Aura Hernandez-Sabate, David Castells, & Jordi Carrabina. (2017). "CYBERH: Cyber-Physical Systems in Health for Personalized Assistance " In International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.
Abstract: Assistance systems for e-Health applications have some specific requirements that demand of new methods for data gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the environment and the user to issue personalized recommendations; 2) data analysis should be able to tackle a limited number of samples prone to include non-informative data and possibly evolving in time due to changes in patient condition; 3) algorithms should run in real time with possibly limited computational resources and fluctuant internet access.
Electronic medical devices (and CyberPhysical devices in general) can enhance the process of data gathering and analysis in several ways: (i) acquiring simultaneously multiple sensors data instead of single magnitudes (ii) filtering data; (iii) providing real-time implementations condition by isolating tasks in individual processors of multiprocessors Systems-on-chip (MPSoC) platforms and (iv) combining information through sensor fusion
techniques.
Our approach focus on both aspects of the complementary role of CyberPhysical devices and analysis of SmallData in the process of personalized models building for e-Health applications. In particular, we will address the design of Cyber-Physical Systems in Health for Personalized Assistance (CyberHealth) in two specific application cases: 1) A Smart Assisted Driving System (SADs) for dynamical assessment of the driving capabilities of Mild Cognitive Impaired (MCI) people; 2) An Intelligent Operating Room (iOR) for improving the yield of bronchoscopic interventions for in-vivo lung cancer diagnosis.
|
|
|
Debora Gil, Aura Hernandez-Sabate, Mireia Burnat, Steven Jansen, & Jordi Martinez-Vilalta. (2009). "Structure-Preserving Smoothing of Biomedical Images " In 13th International Conference on Computer Analysis of Images and Patterns (Vol. 5702, pp. 427–434). Springer Berlin Heidelberg.
Abstract: Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.
Keywords: non-linear smoothing; differential geometry; anatomical structures segmentation; cardiac magnetic resonance; computerized tomography.
|
|
|
Debora Gil, & Guillermo Torres. (2020). "A multi-shape loss function with adaptive class balancing for the segmentation of lung structures " In 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery.
|
|
|
Debora Gil, Guillermo Torres, & Carles Sanchez. (2023)." Transforming radiomic features into radiological words" In IEEE International Symposium on Biomedical Imaging.
|
|