|
Hanne Kause, Patricia Marquez, Andrea Fuster, Aura Hernandez-Sabate, Luc Florack, Debora Gil, et al. (2015)." Quality Assessment of Optical Flow in Tagging MRI" In 5th Dutch Bio-Medical Engineering Conference BME2015.
|
|
|
Guillermo Torres, Jan Rodríguez Dueñas, Sonia Baeza, Antoni Rosell, Carles Sanchez, & Debora Gil. (2023). "Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images " In 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023.
Abstract: This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.
|
|
|
Guillermo Torres, Debora Gil, Antonio Rosell, Sonia Baeza, & Carles Sanchez. (2023)." A radiomic biopsy for virtual histology of pulmonary nodules" In IEEE International Symposium on Biomedical Imaging.
|
|
|
Guillermo Torres, Debora Gil, Antoni Rosell, S. Mena, & Carles Sanchez. (2023)." Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules" In 37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery.
|
|
|
Gloria Fernandez Esparrach, Jorge Bernal, Cristina Rodriguez de Miguel, Debora Gil, Fernando Vilariño, Henry Cordova, et al. (2016)." Utilidad de la visión por computador para la localización de pólipos pequeños y planos" In XIX Reunión Nacional de la Asociación Española de Gastroenterología, Gastroenterology Hepatology (Vol. 39, 94).
|
|
|
Gloria Fernandez Esparrach, Jorge Bernal, Cristina Rodriguez de Miguel, Debora Gil, Fernando Vilariño, Henry Cordova, et al. (2015). "Colonic polyps are correctly identified by a computer vision method using wm-dova energy maps " In Proceedings of 23 United European- UEG Week 2015.
|
|
|
Gemma Sanchez, Josep Llados, & Enric Marti. (1997). "A string-based method to recognize symbols and structural textures in architectural plans " In 2nd IAPR Workshop on Graphics Recognition (pp. 91–103).
Abstract: This paper deals with the recognition of symbols and struc- tural textures in architectural plans using string matching techniques. A plan is represented by an attributed graph whose nodes represent characteristic points and whose edges represent segments. Symbols and textures can be seen as a set of regions, i.e. closed loops in the graph, with a particular arrangement. The search for a symbol involves a graph matching between the regions of a model graph and the regions of the graph representing the document. Discriminating a texture means a clus- tering of neighbouring regions of this graph. Both procedures involve a similarity measure between graph regions. A string codification is used to represent the sequence of outlining edges of a region. Thus, the simila- rity between two regions is defined in terms of the string edit distance between their boundary strings. The use of string matching allows the recognition method to work also under presence of distortion.
|
|
|
Gemma Sanchez, Josep Llados, & Enric Marti. (1997)." Segmentation and analysis of linial texture in plans" In Actes de la conférence Artificielle et Complexité.. Paris.
Abstract: The problem of texture segmentation and interpretation is one of the main concerns in the field of document analysis. Graphical documents often contain areas characterized by a structural texture whose recognition allows both the document understanding, and its storage in a more compact way. In this work, we focus on structural linial textures of regular repetition contained in plan documents. Starting from an atributed graph which represents the vectorized input image, we develop a method to segment textured areas and recognize their placement rules. We wish to emphasize that the searched textures do not follow a predefined pattern. Minimal closed loops of the input graph are computed, and then hierarchically clustered. In this hierarchical clustering, a distance function between two closed loops is defined in terms of their areas difference and boundary resemblance computed by a string matching procedure. Finally it is noted that, when the texture consists of isolated primitive elements, the same method can be used after computing a Voronoi Tesselation of the input graph.
Keywords: Structural Texture, Voronoi, Hierarchical Clustering, String Matching.
|
|
|
Gemma Sanchez, Ernest Valveny, Josep Llados, Enric Marti, Oriol Ramos Terrades, N.Lozano, et al. (2003)." A system for virtual prototyping of architectural projects" In Proceedings of Fifth IAPR International Workshop on Pattern Recognition (pp. 65–74).
|
|
|
Francesco Brughi, Debora Gil, Llorenç Badiella, Eva Jove Casabella, & Oriol Ramos Terrades. (2014). "Exploring the impact of inter-query variability on the performance of retrieval systems " In 11th International Conference on Image Analysis and Recognition (Vol. 8814, 413–420). Springer International Publishing.
Abstract: This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes.
|
|