UEG Week 2015 - Abstract Submission

Topic area: 11. ENDOSCOPY AND IMAGING

Topic: 11.2. Endoscopy, colon

UEG15-ABS-2683 COLONIC POLYPS ARE CORRECTLY IDENTIFIED BY A COMPUTER VISION METHOD USING WM-DOVA ENERGY MAPS

G. Fernández-Esparrach^{* 1}, J. Bernal², C. Rodríguez de Miguel¹, D. Gil², F. Vilariño², H. Córdova¹, C. Sánchez-Montes ¹, I. Araujo¹, M. López-Ceron¹, J. Llach¹, F. J. Sánchez²

¹Endoscopy Unit, Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBEREHD, University of Barcelona, ² Computer Science Department, Universitat Autònoma de Barcelona and Computer Vision Center, Barcelona, Spain

Has this abstract previously been presented?: No

Has this abstract been previously published?: No

Please select "Yes" in case your abstract should be considered as "Translational/Basic Science".: No This abstract should be taken into consideration for the "Today's science; tomorrow's medicine" sessions.: No Does the presenting author fulfil the criteria and want to apply for the travel grant?: Yes

Travel grant selection: Clinical Science travel grant

Contact E-mail Address: mgfernan@clinic.ub.es

Introduction: Polyp miss-rate is a drawback of colonoscopy that results in a lack of total effectiveness in preventing colorectal cancer. The miss-rate increases significantly in small polyps.

Aims & Methods: To evaluate the usefulness of a computer vision method for the identification of colonic polyps.

612 polyp images were used from a data base (CVC-ClinicDB) containing an average number of 20 frames (range 2-25) of 31 different polyps. Our method is based on a model of appearance for polyps which defines a polyp as a protrusion enclosed by valleys of different intensity image. Valley information allows the creation of energy maps (WM-DOVA) related with the likelihood of polyp presence in the image.

Results: 22 polyps were small (< 10 mm), representing a total of 430 frames of the database: 11 non-polypoid (IIa and IIb), 9 sessile (Is) and 2 pedunculated (Ip) with a total of 218, 162 and 50 frames, respectively. All polyps were correctly localized in at least one frame. The number of frames with correct localization was 308 (71.6%) in small polyps compared with 122/182 (67%) in polyps \geq 10 mm (p=0.2) (table). Small non-polypoid polyps were correctly localized in more frames than all the other types: 169/218 (77.5%) vs 261/394 (66.2%); p=0.003. In the 182 frames without a correct polyp location, the possible causes of failure were: folds in 81 (43.8%), polyps in a lateral position in 57 (30.8%), blood vessels in 21 (11.3%) absence of valleys in 12 (6.5%) fecal content in 7 (3.8%) and others in 4 (2.1%)

	# of	# of	# of frames with	# of frames	# of frames with correct	# of polyps with at least one frame
	polyps	frames	correct localization	per polyp	localization per polyp	with correct localization
<10m	22	430	308 (71.6%)	19.5 <u>+</u> 6.3 (2-	14 <u>+</u> 6.8 (1-24)	22 (100%)
m				25)		
lla +	11	218	169 (77.5%)	19.8 <u>+</u> 5.3 (6-	15.4 <u>+</u> 7 (2-24)	11 (100%)
llb				25)		
ls	9	162	105 (65%)	18 <u>+</u> 7.6 (2-	11.7 <u>+</u> 7.3 (1-22)	9 (100%)
				25)		
lp	2	50	34 (68%)	25 <u>+</u> 0 (25-	17 <u>+</u> 1.4 (16-18)	2 (100%)
				25)		
<u>></u> 10	9	182	122 (67%)	20 <u>+</u> 7.1 (5-	13.8 <u>+</u> 8.3 (3-25)	9 (100%)
mm				25)		
llb	1	12	6 (50%)			1 (100%)
ls	2	46	31 (67.4%)	23 <u>+</u> 2.8 (21-	15.5 <u>+</u> 12 (7-24)	2 (100%)
				25)		

lp	6	124	85 (68.5%)	20.7 <u>+</u> 7.8 (5-14.5 <u>+</u> 8.3 (3-25)	6 (100%)
				25)	

Conclusion: Computer vision method WM-DOVA shows good performance for the identification of colonic polyps, particularly those small non-polypoid which are the most difficult to detect during colonoscopy. These results indicate a potential applicability in clinical practice and warrant further clinical studies. I confirm having declared any potential Conflict of Interest for ALL authors listed on this abstract: Yes

Disclosure of Interest: None Declared

Keywords: computer-aided diagnosis, Polyp