|
Debora Gil, Petia Radeva, Jordi Saludes, & J. Mauri. (2000). "Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach " In International Conference on Pattern Recognition (Vol. 4, pp. 352–355).
Abstract: Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
|
|
|
Mariano Vazquez, Ruth Aris, Guillaume Hozeaux, R.Aubry, P.Villar, Jaume Garcia, et al. (2011). "A massively parallel computational electrophysiology model of the heart " . International Journal for Numerical Methods in Biomedical Engineering, 27, 1911–1929.
Abstract: This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale.
Keywords: computational electrophysiology; parallelization; finite element methods
|
|
|
Jaume Garcia, Debora Gil, Sandra Pujades, & Francesc Carreras. (2008). "A Variational Framework for Assessment of the Left Ventricle Motion " . International Journal Mathematical Modelling of Natural Phenomena, 3(6), 76–100.
Abstract: Impairment of left ventricular contractility due to cardiovascular diseases is reflected in left ventricle (LV) motion patterns. An abnormal change of torsion or long axis shortening LV values can help with the diagnosis and follow-up of LV dysfunction. Tagged Magnetic Resonance (TMR) is a widely spread medical imaging modality that allows estimation of the myocardial tissue local deformation. In this work, we introduce a novel variational framework for extracting the left ventricle dynamics from TMR sequences. A bi-dimensional representation space of TMR images given by Gabor filter banks is defined. Tracking of the phases of the Gabor response is combined using a variational framework which regularizes the deformation field just at areas where the Gabor amplitude drops, while restoring the underlying motion otherwise. The clinical applicability of the proposed method is illustrated by extracting normality models of the ventricular torsion from 19 healthy subjects.
Keywords: Key words: Left Ventricle Dynamics, Ventricular Torsion, Tagged Magnetic Resonance, Motion Tracking, Variational Framework, Gabor Transform.
|
|
|
Jose Elias Yauri, M. Lagos, H. Vega-Huerta, P. de-la-Cruz, G.L.E Maquen-Niño, & E. Condor-Tinoco. (2023). "Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings " . International Journal of Advanced Computer Science and Applications, 14(5), 1067–1074.
Abstract: According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.
Keywords: Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention
|
|
|
Francesc Carreras, Jaume Garcia, Debora Gil, Sandra Pujadas, Chi ho Lion, R.Suarez-Arias, et al. (2012). "Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects " . International Journal of Cardiovascular Imaging, 28(2), 273–284.
Abstract: Cardiac magnetic resonance imaging (Cardiac MRI) has become a gold standard diagnostic technique for the assessment of cardiac mechanics, allowing the non-invasive calculation of left ventric- ular long axis longitudinal shortening (LVLS) and absolute myocardial torsion (AMT) between basal and apical left ventricular slices, a movement directly related to the helicoidal anatomic disposition of the myocardial fibers. The aim of this study is to determine AMT and LVLS behaviour and normal values from a group of healthy subjects. A group of 21 healthy volunteers (15 males) (age: 23–55 y.o., mean:30.7 ± 7.5) were prospectively included in an obser- vational study by Cardiac MRI. Left ventricular rotation (degrees) was calculated by custom-made software (Harmonic Phase Flow) in consecutive LV short axis planes tagged cine-MRI sequences. AMT was determined from the difference between basal and apical planes LV rotations. LVLS (%) was determined from the LV longitudinal and horizontal axis cine-MRI images. All the 21 cases studied were interpretable, although in three cases the value of the LV apical rotation could not be determined. The mean rotation of the basal and apical planes at end-systole were -3.71° ± 0.84° and 6.73° ± 1.69° (n:18) respectively, resulting in a LV mean AMT of 10.48° ± 1.63° (n:18). End-systolic mean LVLS was 19.07 ± 2.71%. Cardiac MRI allows for the calculation of AMT and LVLS, fundamental functional components of the ventricular twist mechanics conditioned, in turn, by the anatomical helical layout of the myocardial fibers. These values provide complementary information about systolic ventricular function in relation to the traditional parameters used in daily practice.
Keywords: Magnetic resonance imaging (MRI); Tagging MRI; Cardiac mechanics; Ventricular torsion
|
|
|
Carles Sanchez, Jorge Bernal, F. Javier Sanchez, Antoni Rosell, Marta Diez-Ferrer, & Debora Gil. (2015). "Towards On-line Quantification of Tracheal Stenosis from Videobronchoscopy " . International Journal of Computer Assisted Radiology and Surgery, 10(6), 935–945.
|
|
|
Debora Gil, Ruth Aris, Agnes Borras, Esmitt Ramirez, Rafael Sebastian, & Mariano Vazquez. (2019). "Influence of fiber connectivity in simulations of cardiac biomechanics " . International Journal of Computer Assisted Radiology and Surgery, 14(1), 63–72.
Abstract: PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.
METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).
RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.
CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
Keywords: Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity
|
|
|
Debora Gil, Antonio Esteban Lansaque, Agnes Borras, & Carles Sanchez. (2019). "Enhancing virtual bronchoscopy with intra-operative data using a multi-objective GAN " . International Journal of Computer Assisted Radiology and Surgery, 7(1).
Abstract: This manuscript has been withdrawn by bioRxiv due to upload of an incorrect version of the manuscript by the authors. Therefore, this manuscript should not be cited as reference for this project.
|
|
|
Guillermo Torres, & Debora Gil. (2020)." A multi-shape loss function with adaptive class balancing for the segmentation of lung structures" . International Journal of Computer Assisted Radiology and Surgery, 15(1), S154–55.
|
|
|
Guillermo Torres, Debora Gil, Antoni Rosell, S. Mena, & Carles Sanchez. (2023)." Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules – Intermediate Results of the RadioLung Project" . International Journal of Computer Assisted Radiology and Surgery, .
|
|