|
Records |
Links |
|
Author |
Marina Alberti; Simone Balocco; Carlo Gatta; Francesco Ciompi; Oriol Pujol; Joana Silva; Xavier Carrillo; Petia Radeva |
|
|
Title |
Automatic Bifurcation Detection in Coronary IVUS Sequences |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Biomedical Engineering |
Abbreviated Journal |
TBME |
|
|
Volume |
59 |
Issue |
4 |
Pages |
1022-2031 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a fully automatic method which identifies every bifurcation in an intravascular ultrasound (IVUS) sequence, the corresponding frames, the angular orientation with respect to the IVUS acquisition, and the extension. This goal is reached using a two-level classification scheme: first, a classifier is applied to a set of textural features extracted from each image of a sequence. A comparison among three state-of-the-art discriminative classifiers (AdaBoost, random forest, and support vector machine) is performed to identify the most suitable method for the branching detection task. Second, the results are improved by exploiting contextual information using a multiscale stacked sequential learning scheme. The results are then successively refined using a-priori information about branching dimensions and geometry. The proposed approach provides a robust tool for the quick review of pullback sequences, facilitating the evaluation of the lesion at bifurcation sites. The proposed method reaches an F-Measure score of 86.35%, while the F-Measure scores for inter- and intraobserver variability are 71.63% and 76.18%, respectively. The obtained results are positive. Especially, considering the branching detection task is very challenging, due to high variability in bifurcation dimensions and appearance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0018-9294 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ ABG2012 |
Serial |
1996 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera |
|
|
Title |
Human Limb Segmentation in Depth Maps based on Spatio-Temporal Graph Cuts Optimization |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of Ambient Intelligence and Smart Environments |
Abbreviated Journal |
JAISE |
|
|
Volume |
4 |
Issue |
6 |
Pages |
535-546 |
|
|
Keywords |
Multi-modal vision processing; Random Forest; Graph-cuts; multi-label segmentation; human body segmentation |
|
|
Abstract |
We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α−β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1876-1364 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ HZM2012a |
Serial |
2006 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Hernandez; Carlo Gatta; Sergio Escalera; Laura Igual; Victoria Martin-Yuste; Manel Sabate; Petia Radeva |
|
|
Title |
Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Information Technology in Biomedicine |
Abbreviated Journal |
TITB |
|
|
Volume |
16 |
Issue |
6 |
Pages |
1332-1340 |
|
|
Keywords |
|
|
|
Abstract |
Segmentation of coronary arteries in X-Ray angiography is a fundamental tool to evaluate arterial diseases and choose proper coronary treatment. The accurate segmentation of coronary arteries has become an important topic for the registration of different modalities which allows physicians rapid access to different medical imaging information from Computed Tomography (CT) scans or Magnetic Resonance Imaging (MRI). In this paper, we propose an accurate fully automatic algorithm based on Graph-cuts for vessel centerline extraction, caliber estimation, and catheter detection. Vesselness, geodesic paths, and a new multi-scale edgeness map are combined to customize the Graph-cuts approach to the segmentation of tubular structures, by means of a global optimization of the Graph-cuts energy function. Moreover, a novel supervised learning methodology that integrates local and contextual information is proposed for automatic catheter detection. We evaluate the method performance on three datasets coming from different imaging systems. The method performs as good as the expert observer w.r.t. centerline detection and caliber estimation. Moreover, the method discriminates between arteries and catheter with an accuracy of 96.5%, sensitivity of 72%, and precision of 97.4%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1089-7771 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ HGE2012 |
Serial |
2141 |
|
Permanent link to this record |
|
|
|
|
Author |
Laura Igual; Joan Carles Soliva; Sergio Escalera; Roger Gimeno; Oscar Vilarroya; Petia Radeva |
|
|
Title |
Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Computerized Medical Imaging and Graphics |
Abbreviated Journal |
CMIG |
|
|
Volume |
36 |
Issue |
8 |
Pages |
591-600 |
|
|
Keywords |
Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles |
|
|
Abstract |
We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR; HuPBA; MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ ISE2012 |
Serial |
2143 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Hernandez; Miguel Reyes; Victor Ponce; Sergio Escalera |
|
|
Title |
GrabCut-Based Human Segmentation in Video Sequences |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
12 |
Issue |
11 |
Pages |
15376-15393 |
|
|
Keywords |
segmentation; human pose recovery; GrabCut; GraphCut; Active Appearance Models; Conditional Random Field |
|
|
Abstract |
In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRP2012 |
Serial |
2147 |
|
Permanent link to this record |