|
Records |
Links |
|
Author |
Ester Fornells; Manuel De Armas; Maria Teresa Anguera; Sergio Escalera; Marcos Antonio Catalán; Josep Moya |
|
|
Title |
Desarrollo del proyecto del Consell Comarcal del Baix Llobregat “Buen Trato a las personas mayores y aquellas en situación de fragilidad con sufrimiento emocional: Hacia un envejecimiento saludable” |
Type |
Journal |
|
Year |
2018 |
Publication |
Informaciones Psiquiatricas |
Abbreviated Journal |
|
|
|
Volume |
232 |
Issue |
|
Pages |
47-59 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0210-7279 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no menciona;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ FAA2018 |
Serial |
3214 |
|
Permanent link to this record |
|
|
|
|
Author |
Francesco Ciompi; Oriol Pujol; Carlo Gatta; Oriol Rodriguez-Leor; J. Mauri; Petia Radeva |
|
|
Title |
Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization |
Type |
Journal Article |
|
Year |
2010 |
Publication |
International Journal of Cardiovascular Imaging |
Abbreviated Journal |
IJCI |
|
|
Volume |
26 |
Issue |
7 |
Pages |
763–779 |
|
|
Keywords |
|
|
|
Abstract |
Accurate detection of in-vivo vulnerable plaque in coronary arteries is still an open problem. Recent studies show that it is highly related to tissue structure and composition. Intravascular Ultrasound (IVUS) is a powerful imaging technique that gives a detailed cross-sectional image of the vessel, allowing to explore arteries morphology. IVUS data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue. The main drawback of this method is the few number of available case studies and validated data due to the complex procedure of histological analysis of the tissue. On the other hand, IVUS data from in-vivo cases is easy to obtain but it can not be histologically validated. In this work, we propose to enhance the in-vitro training data set by selectively including examples from in-vivo plaques. For this purpose, a Sequential Floating Forward Selection method is reformulated in the context of plaque characterization. The enhanced classifier performance is validated on in-vitro data set, yielding an overall accuracy of 91.59% in discriminating among fibrotic, lipidic and calcified plaques, while reducing the gap between in-vivo and in-vitro data analysis. Experimental results suggest that the obtained classifier could be properly applied on in-vivo plaque characterization and also demonstrate that the common hypothesis of assuming the difference between in-vivo and in-vitro as negligible is incorrect. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1569-5794 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HUPBA |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ CPG2010 |
Serial |
1305 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Hernandez; Sergio Escalera; Stan Sclaroff |
|
|
Title |
Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures |
Type |
Journal Article |
|
Year |
2016 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
118 |
Issue |
1 |
Pages |
49–64 |
|
|
Keywords |
Contextual rescoring; Poselets; Human pose estimation |
|
|
Abstract |
In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ HES2016 |
Serial |
2719 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristina Palmero; Jordi Esquirol; Vanessa Bayo; Miquel Angel Cos; Pouya Ahmadmonfared; Joan Salabert; David Sanchez; Sergio Escalera |
|
|
Title |
Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis |
Type |
Journal Article |
|
Year |
2017 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
122 |
Issue |
2 |
Pages |
212–227 |
|
|
Keywords |
Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation |
|
|
Abstract |
This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; 303.100 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PEB2017 |
Serial |
2765 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristina Palmero; Albert Clapes; Chris Bahnsen; Andreas Møgelmose; Thomas B. Moeslund; Sergio Escalera |
|
|
Title |
Multi-modal RGB-Depth-Thermal Human Body Segmentation |
Type |
Journal Article |
|
Year |
2016 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
118 |
Issue |
2 |
Pages |
217-239 |
|
|
Keywords |
Human body segmentation; RGB ; Depth Thermal |
|
|
Abstract |
This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ PCB2016 |
Serial |
2767 |
|
Permanent link to this record |