|
Records |
Links |
|
Author |
Albert Clapes; Alex Pardo; Oriol Pujol; Sergio Escalera |
|
|
Title |
Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Machine Vision and Applications |
Abbreviated Journal |
MVAP |
|
|
Volume |
29 |
Issue |
5 |
Pages |
765–788 |
|
|
Keywords |
Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology |
|
|
Abstract |
We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ CPP2018 |
Serial |
3125 |
|
Permanent link to this record |
|
|
|
|
Author |
Jun Wan; Sergio Escalera; Francisco Perales; Josef Kittler |
|
|
Title |
Articulated Motion and Deformable Objects |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
79 |
Issue |
|
Pages |
55-64 |
|
|
Keywords |
|
|
|
Abstract |
This guest editorial introduces the twenty two papers accepted for this Special Issue on Articulated Motion and Deformable Objects (AMDO). They are grouped into four main categories within the field of AMDO: human motion analysis (action/gesture), human pose estimation, deformable shape segmentation, and face analysis. For each of the four topics, a survey of the recent developments in the field is presented. The accepted papers are briefly introduced in the context of this survey. They contribute novel methods, algorithms with improved performance as measured on benchmarking datasets, as well as two new datasets for hand action detection and human posture analysis. The special issue should be of high relevance to the reader interested in AMDO recognition and promote future research directions in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEP2018 |
Serial |
3126 |
|
Permanent link to this record |
|
|
|
|
Author |
Razieh Rastgoo; Kourosh Kiani; Sergio Escalera |
|
|
Title |
Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Entropy |
Abbreviated Journal |
ENTROPY |
|
|
Volume |
20 |
Issue |
11 |
Pages |
809 |
|
|
Keywords |
hand sign language; deep learning; restricted Boltzmann machine (RBM); multi-modal; profoundly deaf; noisy image |
|
|
Abstract |
In this paper, a deep learning approach, Restricted Boltzmann Machine (RBM), is used to perform automatic hand sign language recognition from visual data. We evaluate how RBM, as a deep generative model, is capable of generating the distribution of the input data for an enhanced recognition of unseen data. Two modalities, RGB and Depth, are considered in the model input in three forms: original image, cropped image, and noisy cropped image. Five crops of the input image are used and the hand of these cropped images are detected using Convolutional Neural Network (CNN). After that, three types of the detected hand images are generated for each modality and input to RBMs. The outputs of the RBMs for two modalities are fused in another RBM in order to recognize the output sign label of the input image. The proposed multi-modal model is trained on all and part of the American alphabet and digits of four publicly available datasets. We also evaluate the robustness of the proposal against noise. Experimental results show that the proposed multi-modal model, using crops and the RBM fusing methodology, achieves state-of-the-art results on Massey University Gesture Dataset 2012, American Sign Language (ASL). and Fingerspelling Dataset from the University of Surrey’s Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling A datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKE2018 |
Serial |
3198 |
|
Permanent link to this record |
|
|
|
|
Author |
Yagmur Gucluturk; Umut Guclu; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Sergio Escalera; Marcel A. J. van Gerven; Rob van Lier |
|
|
Title |
Multimodal First Impression Analysis with Deep Residual Networks |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
8 |
Issue |
3 |
Pages |
316-329 |
|
|
Keywords |
|
|
|
Abstract |
People form first impressions about the personalities of unfamiliar individuals even after very brief interactions with them. In this study we present and evaluate several models that mimic this automatic social behavior. Specifically, we present several models trained on a large dataset of short YouTube video blog posts for predicting apparent Big Five personality traits of people and whether they seem suitable to be recommended to a job interview. Along with presenting our audiovisual approach and results that won the third place in the ChaLearn First Impressions Challenge, we investigate modeling in different modalities including audio only, visual only, language only, audiovisual, and combination of audiovisual and language. Our results demonstrate that the best performance could be obtained using a fusion of all data modalities. Finally, in order to promote explainability in machine learning and to provide an example for the upcoming ChaLearn challenges, we present a simple approach for explaining the predictions for job interview recommendations |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGB2018 |
Serial |
3210 |
|
Permanent link to this record |
|
|
|
|
Author |
Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera |
|
|
Title |
Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Transactions on Circuits and Systems for Video Technology |
Abbreviated Journal |
TCSVT |
|
|
Volume |
29 |
Issue |
6 |
Pages |
1729-1740 |
|
|
Keywords |
Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding |
|
|
Abstract |
Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset. |
|
|
Address |
June 2019, |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ AAK2018 |
Serial |
3213 |
|
Permanent link to this record |