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Learning to Recognize Actions on Objects in
Egocentric Video with Attention Dictionaries

Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz

Abstract—We present EgoACO, a deep neural architecture for video action recognition that learns to pool action-context-object
descriptors from frame level features by leveraging the verb-noun structure of action labels in egocentric video datasets. The core
component of EgoACO is class activation pooling (CAP), a differentiable pooling operation that combines ideas from bilinear pooling for
fine-grained recognition and from feature learning for discriminative localization. CAP uses self-attention with a dictionary of learnable
weights to pool from the most relevant feature regions. Through CAP, EgoACO learns to decode object and scene context descriptors
from video frame features. For temporal modeling in EgoACO, we design a recurrent version of class activation pooling termed Long
Short-Term Attention (LSTA). LSTA extends convolutional gated LSTM with built-in spatial attention and a re-designed output gate.
Action, object and context descriptors are fused by a multi-head prediction that accounts for the inter-dependencies between
noun-verb-action structured labels in egocentric video datasets. EgoACO features built-in visual explanations, helping learning and
interpretation. Results on the two largest egocentric action recognition datasets currently available, EPIC-KITCHENS and EGTEA,
show that by explicitly decoding action-context-object descriptors, EgoACO achieves state-of-the-art recognition performance.

Index Terms—Egocentric Vision, Action Recognition, Attention, Higher Order Pooling, Video Classification
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1 INTRODUCTION

EGOCENTRIC VISION, or first-person vision, concerns the
development of computational approaches to visual

intelligence for wearable cameras. Such cameras are typ-
ically worn on the head or on the chest and naturally
approximate the visual field of the camera wearer, thereby
capturing people’s moments in the way they perceive them
visually in natural environment. Making the video infor-
mation from egocentric perception and computing devices
accessible through computer vision and usable via artificial
intelligence has huge impact potential in people’s life. Some
of the applications include tracking and analysis of behavior
to regulate unhealthy lifestyle, providing support to elderly
and visually impaired, advancing human-robot interaction,
studying human-human behavior and cognition, etc., to
name a few.

Perceptual attributes such as observer gaze and spatial
location, and 3D object and scene information are more
directly measurable or discernible from egocentric camera
and sensor streams by matured technology (available on
HoloLens2 and MagicLeap, e.g.). However, other relevant
aspects of interest such as monitoring complex human ac-
tivities require a higher degree of learning-from-streams ca-
pability. Sequences of object manipulation actions are more
intrinsically instilled in the sensory signals. They unfold into
human activities at a longer temporal scale and are thus
harder to characterize visually, identify and measure, thus
calling for a learning approach. A fine-grained recognition
requires focus on subtle discriminative information that
unravels spatially as well as temporally within a visually
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cluttered, dynamic scene. In egocentric video such informa-
tion can unveil intermittently in time (during movement of
the wearer with abrupt view changes), or be a latent feature
of the scene (an open dish cleaner while clearing), or require
spatial-temporal reasoning to be distilled out of a frame
sequence (when an object is manipulated under an action).

Action recognition in egocentric video is particularly
challenging because of several factors that are peculiar to
the scenarios and the way they are recorded in natural
setting and for research purpose. Most research is devoted
to the analysis of video captured from distant, third-person
views, where the actor is usually entirely visible in a static
view of the scene. In first-person video, typically one only
observes the hands and the objects being manipulated under
an action, and their apparent motion is intertwined with
scene ego-motion induced by the frequent body movement
of the camera wearer. This ego-motion may or may not
be representative of the action performed by the observer.
As a result, existing techniques proposed for general ac-
tion recognition become less suitable for egocentric video
analysis. Another peculiarity is that there is typically one
’active object’ among many in the scene that an action
is being applied upon. Which among the many candidate
objects in a cluttered scene is going to be the active object
depends on temporal context, and temporal reasoning may
be required to localize its action specific features spatially
across a frame sequence. Also, there is some scene context
that can help to predict the active object and the action that
is going to be applied on it. Relevant context may come into
view at different stages of an action, even in a non causal
order, and be thus conveniently sampled at frame level and
accumulated over time into an aggregated representation.
In contrast, the representation of latent contextual scene
features such as those of a dominant object, will rely on
evidence across the video to be detected and extracted.
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Representation learning with egocentric action video can
therefore benefit from a proper network design that reflects
these differences: video descriptors for scene context, active
object, and temporal reasoning on it should differ in the way
they are extracted spatially from a shared representation
and aggregated spatio-temporally. The aim of this paper is
to validate this hypothesis and its feasibility for egocentric
action recognition. To achieve this we investigate on the
use of specialized attention mechanisms as a key element
in developing egocentric perception capabilities.

To address the challenge of human action recognition
in egocentric vision, in this paper we present a deep neu-
ral architecture, EgoACO, whose design roots in the need
for explicit action-context-object feature encoding discussed
above. The core component of EgoACO is a differentiable
pooling operation, termed Class Activation Pooling (CAP),
that combines ideas from bilinear pooling for fine-grained
recognition and from feature learning for discriminative
localization. It uses self-attention with a dictionary of learn-
able weights to learn to pool from the most relevant feature
regions. EgoACO uses CAP to decode object and scene
context descriptors from video frame features. It does so by
changing the pooling scheme from global (video level, for
dominant object) to temporally local (frame level, for scene
context). For temporal modeling in EgoACO, we design a
recurrent version of class activation pooling termed Long
Short-Term Attention (LSTA) which is our core technical
contribution. LSTA extends convolutional gated LSTM with
built-in spatial attention and a re-designed output gate. It is
a general model that can be used in RNN based sequence
learning architectures, while it is instantiated in EgoACO
for temporal encoding of the action descriptor. Action, ob-
ject and context descriptors are finally fused by a multi-
head prediction that re-enforces the inter-dependencies be-
tween noun-verb-action structured labels in egocentric ac-
tion recognition datasets. We provide an extensive model
analysis and ablation study of EgoACO and comparison
to state of the art using the two largest egocentric action
recognition datasets currently available, EPIC-KITCHENS
and EGTEA Gaze+. Furthermore, we show through exam-
ples that predictions are consistent with generated attention
maps. Indeed, EgoACO features built-in visual explana-
tions, helping the learning and interpretation of discrimi-
native information in video. It also shows that the relevant
feature regions are not necessarily box shaped or confined
to video tubes, which are representations commonly used
for localization tasks.

The paper is organized as follows. Section 2 discusses
work in egocentric action recognition most closely related
to ours. In Section 3, we present the technical details of the
EgoACO framework. We present and discuss experimental
results in Section 4 and draw conclusions in Section 5.

2 RELATED WORK

In videos, an action is governed by two types of information,
appearance and motion. A successful action recognition
approach should be able to encode information across the
two aforementioned domains. Appearance cues are charac-
terized by the challenges present in image recognition such
as variations in view point and environment. Moreover,

the flexible nature of human body further adds variations
in the action being carried out among different subjects.
On the other hand, actions can be carried out at different
temporal speed, which complicates the temporal encoding
of appearance cues.

With the increasing success of deep learning in address-
ing image classification problems [24], [59], [72], several
deep learning based approaches have been developed for
video action recognition. The straight-forward approach is
to extend 2D Convolutional Neural Networks (CNNs) to the
temporal dimension and applying stacks of video frames as
the input [22], [26], [64], thereby generating spatio-temporal
features. Another alternative is to extract appearance fea-
tures from the individual frames and perform a temporal
pooling operation to encode their temporal evolution [10],
[13], [68]. Recent approaches explore the feasibility of tem-
poral modeling with 2D CNNs [34], [55], [65]. Another
approach includes using two CNNs, each encoding an RGB
image for appearance cues and stacks of optical flow for
motion cues [11], [12], [51].

Compared to third-person videos, egocentric videos are
further challenging due to its intrinsic properties. Firstly,
egocentric videos lack the body pose of the actor and have to
rely on the hand motion and/or ego-motion. Secondly, the
ego-motion caused by the camera wearer may or may not
be representative of the action. This can result in erroneous
predictions. Thirdly, the presence of cluttered background
with several objects can lead to the model learning wrong
and suboptimal representations.

2.1 First Person Action Recognition

Action recognition approaches developed for third-person
videos [5], [51], [68] may be ineffective for egocentric videos
because of previous discussed challenges. However, objects
and hands contained in egocentric videos provide relevant
information that is not available in third-person videos.
Several works that utilize such information have been pro-
posed for egocentric activity recognition. [3], [1] propose to
use information about the objects present in the scene to
recognize activities. The works of [42], [52], [63], [78] train
specialized CNNs for hand segmentation and object local-
ization related to the activities to be recognized. These meth-
ods base on specialized pre-training for hand segmentation
and object detection networks, requiring high amounts of
annotated data for that purpose. Gaze information present
in egocentric videos is also found to be useful for activity
recognition [25], [31].

Another line of research consists of developing effective
techniques for extracting temporal information present in
the video. In [48], [73] features are extracted from a series
of frames to perform temporal pooling with different oper-
ations, including max pooling, sum pooling, or histogram
of gradients. Then, a temporal pyramid structure allows the
encoding of both long term and short term characteristics.
However, all these methods do not take into consideration
the temporal order of the frames. Techniques that use a
recurrent neural network such as Long Short-Term Mem-
ory (LSTM) [4], [14], [66] and its convolutional variant
(ConvLSTM) [56], [57] are proposed to encode the temporal
order of features extracted from a sequence of frames.
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Adding optical flow extracted from video frames as an
additional modality to RGB frames have benefited third
person action recognition techniques [12], [51]. Inspired
from this, approaches that apply additional modalities of
information have been explored in egocentric domain [42],
[60], [61]. Due to the presence of ego-motion, which may
or may not be correlated with the action, directly applying
the optical flow can lead to wrong predictions. [42] address
this problem by using warped optical flow that compensates
the ego-motion present in the input video. [60], [61] add an
additional stream that accepts depth maps to the two stream
network enabling it to encode 3D information present in
the scene. Audio present in the videos is also found to
be an effective source of information for egocentric action
recognition [6], [28].

Majority of the state-of-the-art techniques rely on addi-
tional annotations such as hand segmentation, object bound-
ing box or gaze information [30], [38], [42], [63], [78]. This
allows the network to concentrate on the relevant regions
in the frame and helps in distinguishing each activity from
one another. However, manually annotating all the frames
of a video with previous information is impractical. For
this reason, the development of techniques that can iden-
tify relevant regions of a frame without using additional
annotations is crucial.

2.2 Attention

Attention mechanism was proposed to enable a network
to focus on features derived from spatial regions that are
relevant for the recognition of a given task. This includes
[2], [41], [67] for image and video captioning, [2], [33],
[45] for visual question answering and [19], [32], [58] for
third-person action recognition. [19] and [58] generate top-
down attention that focuses on the spatially important re-
gions for third-person action recognition. Unlike its image
counterparts, attention maps generated in videos have to
be temporally coherent. Several approaches that take into
consideration this temporal aspect have been proposed [32],
[49], [74], [79]. [49] and [74] derive the attention map for each
frame from the hidden state of a LSTM. The effectiveness
of convolutional structures at the different control gates
of a Convolutional Long Short-Term Memory (ConvLSTM)
and attention is studied in [79]. [32] develop a ConvLSTM
module with in-built spatio-temporal attention.

Due to the presence of cluttered background, identifying
the relevant spatial regions is crucial for egocentric action
recognition. The works of [30], [38], [39] exploit gaze in-
formation present in the videos to generate the attention
map. The work of [75] uses attention derived from an object
detector and temporal cues from a 3D CNN for identifying
the objects of interest in egocentric videos. In [57] top-down
attention generated from the prior information encoded
in a CNN pre-trained for object recognition is used for
egocentric action recognition. [43], [70] use object detectors
for generating attention.

Most existing techniques for generating spatial attention
in egocentric videos rely on additional information such as
eye gaze or object detections. This makes such approaches
impractical. Moreover, in these approaches the spatial atten-
tion is derived independently for each frame. Since video

frame sequences have an absolute temporal consistency, per
frame processing results in the loss of valuable information.
Moreover, approaches that rely on eye gaze or object detec-
tions may neglect another relevant appearance cue present
in the video such as scene context.

To address previous issues, in this work we develop a
learnable attention mechanism that can leverage the prior
information encoded in a CNN trained for other tasks,
such as object recognition. We further introduce a novel
recurrent neural unit, Long Short-Term Attention (LSTA),
incorporating our attention mechanism.

2.3 Multi-task learning
Training a model with multiple objectives, i.e., multi-task
learning, is found to be effective in several research areas
from speech recognition [8], [62], natural language pro-
cessing [40], [53] to computer vision [29], [36]. Multi-task
learning allows a model to leverage the relation among
the considered tasks to generate effective representations,
thereby improving its generalization capability.

Several works have explored multi-task learning in the
context of egocentric action recognition [7], [27], [28], [30],
[42]. [30] train a network to predict the action along with
the gaze while [27] adds hand location prediction as well.
Predicting the hand segmentation and gesture jointly is
explored in [7]. However, these approaches require addi-
tional annotations in the form of gaze and hand locations.
Other alternative is to exploit the inherent structure of the
action labels. In egocentric datasets consisting of object
manipulation actions, an action is defined as a verb-noun
pair. [28] train a network to predict the verb and noun labels
while [42] predicts the action label in addition to the verb
and noun labels.

In most of the existing works, the different tasks are
predicted from the same representation, usually using a sep-
arate output layer [28], [30]. This is less optimal as different
tasks may require specialized representations. For instance,
verb prediction require strong spatio-temporal reasoning
while only spatial reasoning may be required for predicting
noun labels. Thus, it is critical to decode the underlying
specialized features from frame level representation learned
with a CNN. Authors of [42] address this problem by train-
ing two different networks, one for verb and one for noun
and the output of the two networks is used to predict the
action label. Such a schema consisting of different networks
is computationally more expensive and difficult to train. In
addition, they rely on identical architectures for learning
both verb and noun representations.

Here we present EgoACO, an end-to-end trainable deep
architecture for egocentric action recognition, exploiting the
availability of structured labels and their latent relationship
with each other. Our method consists of different indepen-
dent pooling layers with an in-built attention mechanism.
With these specialized layers, our model is capable of decod-
ing the important feature components for addressing each
task, i.e., verb, noun and action prediction.

3 ACTION-ON-OBJECT PREDICTION FRAMEWORK

In this section, we present a detailed description of our
action prediction framework for egocentric video.
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Fig. 1: Overview of the egocentric action prediction frame-
work EgoACO – Egocentric Action-Context-Object Net.

3.1 Overview
Our model design is inspired by the observation that dis-
criminative information in egocentric video is both appear-
ance based and temporal, and may relate to scene context,
a particular object or latent scene feature, and the temporal
progression of a performed action. Fig. 1 shows an overview
of Egocentric Action-Context-Object Net (EgoACO), our
action prediction framework for egocentric video. It is com-
posed of a generic feature extractor and three specialized
branches, which are designed to extract descriptors associ-
ated to these three factors from the shared video features.
The descriptors are finally fused to predict the verb, noun
and action categories.

More in detail, given an input video clip, we first sample
a temporally ordered sequence of T video frame features x
using a 2D CNN trunk from the ResNet family. From these
features we extract three video descriptors, dobj ,dctx,dact,
to encode the relevant spatial and spatio-temporal informa-
tion for action prediction in egocentric video. The descriptor
extraction blocks implement different frame feature aggre-
gation schemes sharing an underlying attention mechanism
we term class activation pooling, to separate object-centric,
contextual, and temporal reasoning on the video clip. The
three descriptors are then fused by a multi-head predic-
tion module whose design is to explicitly model the inter-
dependencies between noun, verb, and action class scores.

In the following we will first introduce Class Activation
Pooling (CAP) in subsection 3.2 without making explicit ref-
erence to its use in our action prediction architecture. Then,
for a smoother and progressive approach to presenting the
technical details of EgoACO design, in subsection 3.3 we
first describe how CAP is used to extract object-centric and
scene context descriptors from a video clip. How to use
it to implement temporal reasoning over a frame feature
sequence will then be detailed in subsection 3.4, where we
introduce LSTA which is our key technical contribution in
this paper. We complete the description of our framework
with subsection 3.5 on multi-head prediction.

3.2 Class Activation Pooling (CAP)
The driving principle of attention design is to make our
encoding of clip descriptors effective in the cluttered ego-
centric scene. We posit this requires the ability to (i) spatially
localize a number of descriptor-specific feature regions for
objects, context, and temporal reasoning, and (ii) higher
order pooling operations to decide upon which of the lo-
calized region(s) to encode into the descriptors. To realize
this we combine ideas from class activation mapping for

discriminative localization [77] and bilinear pooling for fine-
grained recognition [35].

Let X ∈ RN×K be the matrix view of a feature tensor
with N = HW spatial locations and K feature channels.
First order pooling on X is commonly implemented as the
last layer of image classification architectures. By applying
a weight matrix W ∈ RK×C on the spatially accumulated
feature 1TX ∈ R1×K (1 is a N -size vector of all ones), the
C class scores are obtained as

poolorder1(X) = 1TXW. (1)

More generally, a parametric pooling operation will map
X to an embedding space of dimension C . In second-order
parametric pooling, a weight tensor W ∈ RK×K×C is
applied to the bilinearly mapped feature XTX ∈ RK×K .
Each value of the C-dimensional embedding can be mathe-
matically expressed as Tr(XTXWT

c ) where Wc is the c-th
matrix slice of weight tensor W and Tr is the matrix trace.
Since the bilinearly mapped feature is K2-sized hence high-
dimensional, full parametric second order pooling is over
parametrized and expensive to compute. Low-dimensional
approximations such as compact bilinear pooling [15] or
attentional pooling [19] have been proposed for vision tasks.
Girdhar and Ramanan [19] show that with a rank-1 approx-
imation Wc ≈ abT where a,b ∈ RK×1, the embedding
value for dimension c becomes aTXTXb. By imposing that
weights a are shared across embedding dimensions we can
stack the b’s into a weight matrix B ∈ RK×C and define
our rank-1 approximation of second order pooling in matrix
notation as

poolrank1(X) = (Xa)TXB. (2)

We now compare Eq. (2) with standard pooling in Eq. (1)
to justify the shared weight assumption on a and review the
attention mechanism in the rank-1 approximation to localize
feature regions for second order pooling. A first observation
is that B takes on the role of classifier weights W in
Eq. (1). Differently, the spatial sum-pooling operation on X
represented by the constant 1T in Eq. (1) is replaced by a
spatial self-attention (Xa)T ∈ RN×1. The self-attention acts
uponXB by weighting feature locations data dependently1.

In a model built on Eq. (2), the self-attention weights a is
a single, free parameter vector that is learnt during training.
For fine-grained recognition in a cluttered scene however,
the intuition for a more flexible model is to retrieve a from a
dictionary of learnable self-attention weights. Each weights
in the dictionary can then specialize for a specific cate-
gory. For example, there can be dictionaries for egocentric
views of objects, for scene context features, for hand-object
views in action. Interestingly, we find that class activation
maps [77] provide a localization mechanism of the same
(Xa)T linear form of Eq. (2) and can be repurposed to
implement a weights dictionary extension in rank-1 pooling.

In our extension, a selector maps X into a dictionary
score space A and returns the index c∗ of dictionary item
that obtained the highest score. The selector is of the form
c∗ = argmaxc π(ε(X),ac) where ε is a reduction and ac ∈
A are the parameters for scoring X against item c. If π is

1. The shared weight assumption leading to Eq. (2) ensures that a
same (Xa)T is to be applied bottom-up across all pooling dimensions.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

ε-equivariant2 then π(ε(X),a) = ε(π(X,a)) and we can use
{ε⊥(π(·,ac))}ac∈A as a dictionary of self-attention functions
associated to ε. That is, self-attention ς from dictionary A is
the triplet

(ς) = (ε, π,A) , π is ε-equivariant (3)

and is evaluated on feature matrix X by

ς(X,A) = ε⊥(π(X,ac∗)) (4)
where c∗ = argmax

c
π(ε(X),ac) (5)

where ε⊥ denotes the ε-orthogonal reduction3. If we choose

ε(X) ← spatial sum-pooling
π(ε(X),ac) ← linear mapping

then ς(X,A)XB = (Xac∗)
TXB with c∗ from Eq. (5). It

has the same linear form as in Eq. (2). This is related to
class activation mapping [77] introduced for discriminative
localization. Note however that, in contrast to [77] that uses
strong supervision to train the selector directly, we lever-
age video-level annotation to implicitly learn an attention
mechanism for video classification.

In summary, class activation pooling is a differentiable
rank-1 approximation of second order pooling with learn-
able embedding matrix B and self-attention dictionary A.
The resulting model is

ca-pool(X,A) = softmax(Xac∗)
TXB (6)

where c∗ = argmax
c

1TXac (7)

It enhances the model in Eq. (2) by replacing self-attention
with class activation based attention to leverage discrimi-
native localization for descriptor encoding. It has the form
of a bilinear model ca-pool(X,A) = fA(X)T fB(X) in-
troduced in [35] for fine-grained recognition tasks, where
fB(X) = XB and fA(X) = softmax(Xac∗) can be inter-
preted as a detector of discriminative feature regions.

3.3 Active Object and Scene Context Pooling
We now describe how class activation pooling can be used
in the architecture of Fig. 1 to extract object-centric and scene
context descriptors from a video clip.

Action prediction in our context requires identifying the
active object, which is the object on which the action is ap-
plied on. Egocentric scenes are typically cluttered, meaning
there can be many objects visible in a first person view of
the scene while the wearer is doing an action. Some of these
objects may represent scene context helpful in recognizing
an action, while the presence of others may stay in no
relation to the action. Using off-the-shelf object detectors
trained on images or single video frames may not be the
optimal choice, as it will fire lots of false positives across an
egocentric video frame sequence. Also, discriminating the
active object from others in the scene may require focus on

2. A network layer Φ is said g-equivariant if ”transforming an input
x by a transformation g (forming Tgx) and then passing it through the
learned map Φ should give the same result as first mapping x through
Φ and then transforming the representation”, from Cohen & Welling:
Group Equivariant Convolutional Networks, ICML’16.

3. For example, if ε is max or mean pooling along one dimension then
ε⊥ is max or mean pooling along the other dimensions.

subtle visual interactions like the contact of a hand with
the pizza dough or the spoon entering a sugar bowl. These
may not be well represented in object detection datasets
and appear only in a fraction of frames in the clip. Densely
annotating video clips at frame level with bounding boxes
or accurate pixel level masks is difficult and too expen-
sive. We therefore follow a weakly supervised approach
to active object and scene context representation learning
from video using video-level labels. To face the challenges
of fine-grained recognition, we build upon the strong fea-
ture learning and discriminative localization capability with
class activation pooling.

3.3.1 Active Object Descriptor
We use spatio-temporal class activation pooling over the
video feature volume. For this, the tensor x ∈ RT×H×W×K

is reshaped into its matrix view, X ∈ RHWT×K . We ob-
tain dobj ∈ RMobj using an object attention dictionary
Aobj ∈ RK×C .

X ← reshape(x; (HWT,K)) (8)
dobj = ca-pool(X,Aobj) (9)

The active object dictionary Aobj will be trained through
dobj receiving direct supervision from the noun category
labels. However, through multi-head prediction described
in Sec. 3.5, both action and verb category labels will also
contribute.

3.3.2 Scene Context Descriptor
We use frame-wise, spatial class activation pooling over the
temporal sequence of frame features. For this, the feature
tensor x ∈ RT×H×W×K is reshaped into a batch X of
T matrix views, X ∈ RT×HW×K . We obtain a batch
of frame descriptors using a context attention dictionary
Actx ∈ RK×C . We reduce the batch of T video frame
descriptors to dctx ∈ RMctx using sum pooling.

X ← reshape(x; (T,HW,K)) (10)
dctx = 1T ca-pool(X,Actx) (11)

The scene context dictionary Actx will be trained through
dctx receiving direct supervision from the action category
labels, but also verb and noun labels will contribute through
coupled multi-head prediction.

3.4 Long Short-Term Attention (LSTA)
We now present LSTA, a new recurrent unit blending the
attention mechanism and sequence learning for temporal
reasoning over a frame features sequence.

Class activation pooling entails a sophisticated attention
mechanism while it uses a linear model, B in Eq. (6), for
embedding. We used spatio-temporal reshaping in Eq. (8) or
sum pooling across time in Eq. (11) to handle the temporal
dimension in the video clip. With these operations, video
frames are processed as a set of features, in an order-less
manner. Recognizing actions on objects, however, also re-
quires strong temporal sequential reasoning. We therefore
now replace the linear B in class activation pooling with
time-recurrent convolutional embedding. For this we isolate
the attention part of class activation pooling in Eq. (6) as

ca-attn(X,A) = softmax(Xac∗)
T �X (12)
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where � denotes the column-wise Hadamard product be-
tween a row vector and a matrix. Since this function outputs
a matrix view of the same shape of inputX , it is licit to write
ca-attn(x, A) in tensor form, leaving intended the reshape
operations to be performed on input x and its output.

3.4.1 Action Descriptor Encoding with Recurrent Attention
We use LSTM [17], [21] with convolutional gates [50] as our
recurrent model base. The straightforward way in [57] is to
feed the ConvLSTM with attention-weighted frame features
sequence, that is, with ca-attn(x, Aact) whereAact ∈ RK×C

is an action features attention dictionary. However, videos
have an absolute temporal consistency, and the same may
hold for the spatial location of discriminative action fea-
tures. They should track smoothly across an action se-
quence. Generating spatial attention independently for each
frame, that is bottom-up without temporal causal interac-
tion, may result in poor action descriptor encoding.

We reformulate Eq. (12) to inject temporal dependencies
through a residual correction r. We use a convolutional
RNN4 to learn the sequence of residuals to have a smooth
tracking of attention, that is

rca-attn(xt, rt−1, Aact) = rt,yt (13)
with rt = convrnn(xtac∗ ; rt−1) (14)

yt = softmax(xtac∗+ rt)
T� xt (15)

To encode the video frame features sequence x of length
T into an action descriptor dact we apply a single layer
ConvLSTM with Mact = 512 output planes on the output
of rca-attn. That is,

rt,yt = rca-attn(xt, rt−1, Aact) (16)
ht, ct = convlstm(yt;ht−1, ct−1) (17)
dact = 1T cT (18)

where r,h, c are the output and memory state sequences
of the RNNs. After recurrent encoding, the final internal
memory tensor cT is spatial sum-pooled to obtain the action
descriptor dact.

3.4.2 Improving Memory Propagation through Attention
We now dive into the internals of convlstm to improve its
memory propagation through attention. In compact nota-
tion, LSTM equations are

(ic, fc, c) = (σ, σ, η)(Wc ∗ [yt,ot−1 � η(ct−1)]) (19)
ct = fc � ct−1 + ic � c (20)
ot = σ(Wo ∗ [yt,ot−1 � η(ct−1)]) (21)

where σ, η are sigmoid and tanh activations, Wc,Wo are
the learnable convolution kernels, ∗ is convolution. For
convenience, we replace ht by ht ← ot � η(ct) and recur
on the output gate ot instead of ht.

We observe that ot�η(ct), that is output ht, is a gated η-
view of internal memory ct. It is used to compute the gates
(Eq. (19)) that control the memory update (Eq. (20)), and
to update itself (Eq. (21)). Gate ot has therefore a critical
role in LSTM based sequence learning and encoding. We
use a peephole connection [16] and our ca-attn attention

4. Our implementation has LSTM with 1 output plane

ct−1 ct

ot−1 ot

rt

xt

rt−1

η

×

× +

×

σ

σ

η

× σ

+ ×RNN

yt

νa

ς

νc

ς

‖ ‖

Fig. 2: LSTA extends LSTM (black part) with two novel
components: recurrent attention and fine-grained output
gating. The first (red part, rca-attn in Eq. (16)) tracks a
weight map to focus on relevant feature regions, while
the second (green part, Eq. (22)) introduces a high-capacity
output gate. At the core of both is a spatial self-attention
ς(·, A) that pools parameters from attention dictionary A.

with memory attention dictionary Amem ∈ RMact×D for
fine-grained output gating,

ot = σ(Wo ∗ [ca-attn(ct, Amem),ot−1 � η(ct−1)]) (22)

3.4.3 Coupling Attention on Memory with Recurrent Atten-
tion on Features

To further enhance the memory tracking, we use yt, that
is the attention filtered frame features from Eq. (16), to
internally adapt the attention dictionary for output gating
as follows:

Amem ← Amem +Aoε(yt). (23)

We apply the reduction ε(yt) followed by a linear transform
Ao ∈ RK×Mact to fit the dictionary size. This makes the
attention dictionary for fine-grained output gating data
dependent.

3.4.4 LSTA at a Glance

We now list LSTA equations in detail to ensure reproducibil-
ity of our implementation in [54] that can be accessed at
https://github.com/swathikirans/LSTA.

νa = ς(xt, Aact) (24)
rt = convrnn(νa, rt−1) (25)
yt = softmax(νa + rt)� xt (26)

(ic, fc, c) = (σ, σ, η)(Wc ∗ [yt,ot−1 � η(ct−1)]) (27)
ct = fc � ct−1 + ic � c (28)
νc = ς(ct, Amem +Aoε(yt)) (29)
ot = σ(Wo ∗ [νc � ct,ot−1 � η(ct−1)]) (30)

Fig. 2 illustrates the LSTA. Eqs. (24)-(26) implement our
recurrent class activation attention rca-attn from Sec. 3.4.1
(Eqs. (13)-(14); red part in Fig. 2). Eqs. (29)-(30) is our
modified output gating from Sec. 3.4.2 (Eq. (22) with Amem

from (23); green part in Fig. 2). Bold symbols represent
recurrent variables. ς indicates the softmax term of Eq. (12),
that is, ς(x, A) is ca-attn(x, A) without �x.

https://github.com/swathikirans/LSTA
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Fig. 3: Multi-head prediction in EgoACO. To account for
relationships between the tasks, we use the action logits to
control the bias of verb and noun prediction, through linear
maps (dashed arrows).

3.5 Multi-head Prediction
As discussed earlier, the annotations of egocentric datasets
containing object manipulation actions are of the form verb,
noun, action labels for each video clip. To leverage such
label structure for action recognition, we follow a multi-
head prediction strategy to generate the verb, noun, action
predictions for each video. To explicitly model the inter-
dependencies among the three prediction tasks, we use the
prediction scores (logits) of one task to adapt the bias of
the classifier of other tasks. This way, a descriptor used to
solve one task can influence the learning and prediction of
others, e.g., in our implementation dobj informs about the
verb category via the action logits. This is shown in Fig. 3.

3.5.1 Noun Prediction
Noun recognition requires locating the active object present
in the scene. The active object descriptor (dobj) in Sec. 3.3 is
trained in a weakly supervised way to locate and attend to
the active object present in the video frames.

3.5.2 Verb Prediction
Identifying the verb action applied on an object requires
strong temporal reasoning and the ability to track the rel-
evant spatio-temporal patterns present in the video. For
verb recognition, we apply the sum-pooled internal memory
state of LSTA, dact, as the input to a linear classifier.

3.5.3 Action Prediction
In contrast to the majority of the existing works that predict
only the verb and noun labels and pair the predictions into
an action label, we train our model to predict the action
labels as well. Since an action is constituted by the combina-
tion of a verb and noun, using dact and dobj is a reasonable
choice for action prediction. It should be noted that the
descriptor dobj is predicting the noun labels with its own
linear weights B. In order to predict the action from object-
centric descriptor, we use a separate set of linear weights
W ∈ RK×Mact . Sharing the attention dictionary, Aobj , this
way allows the network to localize discriminative features
of active objects for action prediction. The descriptor dact is
applied to another set of linear layer for generating action
predictions. As discussed in Sec. 3.3, the scene context could
play a vital role in narrowing down the possible action
category candidates. The scene context descriptor, dctx,
maps the input features to the action label space. To obtain

the final action prediction for an input video, we average
the predictions made by all three descriptors. To model the
inter-dependencies of verb, noun and action prediction tasks
via bias control as shown in Fig. 3, we map the action logits
to the number of verb and noun classes using linear layers
and add them to the verb and noun prediction scores.

4 EXPERIMENTS

In this section we describe the experiments and discuss
our analysis done for evaluating the performance of the
proposed EgoACO framework.

4.1 Datasets
We use two large scale egocentric datasets, EPIC-
KITCHENS [9] and EGTEA Gaze+ [30], for benchmarking
the proposed approach. Both datasets contain actions car-
ried out in a kitchen environment.
EPIC-KITCHENS consists of ∼39K video clips and ∼11.5M
frames. The videos are captured in several natural kitchen
environments by multiple users, resulting in large varia-
tions in appearance of objects, environment and unscripted
action patterns executed by the users. The annotations are
provided in the form of verb and noun labels, and consist of
125 verbs and 352 noun categories. We combine the verb and
noun labels to obtain the action label. There are 2513 valid
action categories in the training set, out of a possible set of
44K combinations. We report the performance on the two
standard test splits, seen (S1) and unseen (S2). S1 consists
of video clips from the same environments that are present
in the training set. S2 contains videos from sequences of 4
participants that are held out for testing.
EGTEA Gaze+ is the largest egocentric dataset with gaze
annotations. Compared to EPIC-KITCHENS, the videos in
EGTEA Gaze+ are captured in a single, controlled kitchen
environment by 32 people. Thus the appearance variations
are less in EGTEA Gaze+ compared to EPIC-KITCHENS.
The dataset contains ∼10K video clips with verb, noun
and action annotations. There are 19 verb classes, 53 noun
classes and 106 action classes present in the dataset. The
dataset developers provide three standard train/test splits.
We evaluate our approach on all three splits in terms of
micro (accuracy) and macro (mean class accuracy) metrics.

4.2 Implementation Details
Backbones. We use 2D ResNet based CNN (hereafter re-
ferred to as R2D) as the backbone in all the experiments.
For experiments on the large scale EPIC-KITCHENS dataset
we also provide results with R(2+1)D backbone on frame
snippets. For this we change the temporal stride in layers
conv4_x and conv5_x to 1 and perform temporal average
pooling at the output to reduce the temporal dimension of
snippet features to 1 (same as for R2D features).
Shared Features. Decoding the three descriptors
dact,dctx,dobj from a same feature representation x may be
suboptimal. Using three separate CNNs is computationally
expensive and can lead to overfitting. In our approach, we
share the layers of the ResNet backbone until conv4_x
and separate conv5_x layers for the three different heads.
That is in Fig. 1, x is the output of the shared conv4_x
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TABLE 1: Ablation analysis on the validation split of EPIC-KITCHENS dataset to study the effectiveness of recurrent
attention and fine-grained output gating.

Method Verb Noun Action
Baseline (ConvLSTM) 35.16/74.7 16/36.57 9.87/21.93
Baseline + rca-attn 39.14/73.89 16.95/38.19 12.25/25.62
Baseline + fine-grained output gating 46/76.94 21.32/41.73 13.75/28.71
Baseline + rca-attn + fine-grained output gating 45.81/77.47 22.36/45.16 14.92/30.43
LSTA 47.21/78.38 22.19/45.65 15.09/30.79

TABLE 2: Sensitivity analysis done on the validation split
of EPIC-KITCHENS dataset to study the effect of hyper-
parameter D, the size of the memory attention dictionary
Amem used in LSTA for output pooling, Eq. (21).

Size of Amem Verb Noun Actionin Eq. (21)
100 45.24/75.69 20.87/42.47 13.84/27.8
200 44.23/76.03 20.85/42.78 13.56/28.57
300 47.21/78.38 22.19/45.65 15.09/30.79
400 45.2/76.31 20.68/41.01 14.07/27.02
500 45.29/76.22 20.87/42.57 14.28/28.35

and conv5_x blocks enter the three descriptor decoding
branches. This allows the model to capture different high-
level information best suited for the three-fold verb, noun,
action classification task, with reduced compute complexity.
Parameters. Mobj and Mctx are selected as the number of
noun and action classes for each dataset. The number of hid-
den units in LSTA, Mact, is chosen as 512. The attention dic-
tionaries will be initialized with the dense classifier weights
of the pre-trained backbone CNN, hence, Aobj , Aact, Actx

with R2D models have cardinality C = 1000 (from Ima-
geNet) while with R(2+1)D model we have C = 400 (from
IG-Kinetics-65M). The size of Amem, the memory attention
dictionary of LSTA, is set to D = 300.
Training. R2D CNNs were pre-trained on ImageNet while
R(2+1)D was pre-trained on IG-Kinetics-65M [18]. Attention
dictionaries Aobj , Aact, Actx are initialized with the dense
classifier weights of the pre-trained backbone CNN. All
other parameters are initialized using Kaiming initializa-
tion [23]. EgoACO is trained end-to-end with the loss

L = LN + LV + LA (31)

where LN , LV , LA represent the categorical cross-entropy
loss of noun, verb, action predictions. We train the net-
work in three stages. In the first stage, the weights of the
backbone CNN are frozen while all the other layers are
updated. In stages 2 and 3, the parameters in conv5_x
and conv4_x of the backbone are trained together with the
layers trained in stage 1. Such multi-stage training strategy
stabilizes the training process and has been applied in previ-
ous works [20], [44], [69], [70]. Stochastic Gradient Descent
(SGD) with momentum 0.9 and weight decay 5 × 10−4 is
used as the optimizer. We use a cosine learning rate sched-
ule [37] without warm restarts for adjusting the learning rate
during training. Stages 1 and 2 are trained with an initial
learning rate of 10−2 and for 60 epochs while stage 3 is
trained for 30 epochs with an initial learning rate of 10−4. A
dropout of 0.5 is used to prevent overfitting. A batch size of
32 is used in all three training stages. We follow the sparse
sampling strategy of TSN in [68] for model training and

testing. A video clip is first divided into 20 equal-length
segments. A frame is then randomly sampled from each
segment. The 20 sampled frames are applied as input to
R2D based models while for R(2+1)D based models we use
the three consecutive frames around each sampled frame to
form the 20 input snippets. For spatial augmentation, we
use corner cropping and scale jittering. We first scale the
frame such that the size of the shorter side is 256 for R2D
models and 128 for R(2+1) models. Then we randomly crop
from either the corners or the center. The dimension of the
cropped clip is randomly selected from {256, 224, 192, 168}
for R2D and from {128, 112, 96, 84} for R(2+1)D models.
The cropped region is then rescaled to 224 for R2D models
and 112 for R(2+1)D based models. The cropped frames are
further randomly flipped horizontally.
Testing. From each clip we sample 20 frames/snippets
twice, to form two input sequences. The first sequence is
made of the central frame/snippet of each segment while
for the second sequence we use the first frame/snippet of
each segment. The selected frames are first scaled such that
the shorter size is 256 for R2D models and 128 for R(2+1)D
models. We then crop from the center of the frame with a
dimension of 224 × 224 for R2D based models while for
R(2+1)D based models, the cropped frame size is 112× 112.
The scores obtained from the two input sequences are aver-
aged to obtain the output prediction scores.

We follow the same settings for both datasets used in
this study. Source code of our implementation can be found
online at https://github.com/swathikirans/EgoACO.

4.3 Model Analysis
The model analysis is done on the validation split, proposed
in [3], of EPIC-KITCHENS dataset. We use 2D ResNet with
depth 34 (R2D-34) as the CNN backbone for all the ablation
studies. In Sec. 4.3.1 we analyze the impact of recurrent at-
tention (Sec. 3.4.1) and fine-grained output gating (Sec. 3.4.2)
on ConvLSTM. We study the effectiveness of object and
scene context pooling (Sec. 3.3) along with an analysis of
the effectiveness of our design choices in modeling the inter-
dependencies among the three prediction tasks in Sec. 4.3.2.
In Sec. 4.3.3 we evaluate the effectiveness of three-fold
supervision via multi-task learning in training EgoACO.
Sec. 4.3.4 presents the comparison between our dictionary-
based self attention mechanism against attentional pool-
ing [19] and class activation mapping [77]. We also visualize
attention maps generated by EgoACO in Sec. 4.3.5. In all the
tables reporting the results of our model analysis, both Top-1
and Top-5 recognition accuracies are shown (Top-1/Top-5).

4.3.1 Ablation on LSTA
Tab. 1 shows the results of the study done on LSTA. We
choose a model with ConvLSTM as the baseline. We predict

https://github.com/swathikirans/EgoACO
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verb, noun, action labels from the internal memory state
of ConvLSTM. Next we added recurrent attention (rca-
attn, Sec. 3.4.1) to the ConvLSTM baseline. We observe
improvements in the performance of all three tasks, over
the baseline. The most improvement was observed for
verb and action predictions. Detailed analysis shows that
the attention mechanism enables the network to correctly
classify actions with objects that are similar in appear-
ance such as take_plate and take_bowl, put_lid and
put-down_pan.

Replacing the standard output gating of ConvLSTM
(Eq. 21) with our fine-grained output gating (Eq. 22) de-
scribed in Sec. 3.4.2 results in an increase of +10.84%,
+5.32% and +3.88% for verb, noun and action recogni-
tion accuracies, respectively. Analysing the most improved
classes by adding our enhanced output gating, we observe
that the network improved its ability to recognize verbs that
are similar in execution such as peel and remove, put and
pour, put and close.

Then, we added both rca-attn and fine-grained output
gating to the baseline and observed an improvement of
+5.05% in action prediction. Analysis of the improved
classes over the baseline shows that it is able to distinguish
between verbs and nouns that are similar in action and
appearance, respectively, such as put and pour, scrape
and wash, food and pasta, pan and pot.

We finally coupled the attention on memory with re-
current attention on features as described in Sec. 3.4.3,
resulting in LSTA. This resulted in a performance gain over
baseline of +12.05%, +6.19% and +5.22% for verb, noun
and action recognition accuracies, respectively. Analysis
of the most improved classes reveals that LSTA is able
to discriminate actions involving similar objects such as
peel_potato and put-down_potato, close_lid and
put_lid, as well as actions involving similar verb patterns
such as wash_knife and wash_spoon, wash_plate and
wash_bowl.

One notable feature of LSTA is the improved memory
propagation using attention mechanism, as described in
Sec. 3.4.2. Tab. 2 reports the result of sensitivity analysis con-
ducted on LSTA by varying the size of the memory attention
dictionary, D. As can be seen from the table, the recognition
performance increases as the dictionary size is increased
from 100 to 300 followed by a gradual reduction. Following
this result, we choose D = 300 in our experiments.

TABLE 3: Ablation analysis on the validation split of EPIC-
KITCHENS dataset to study the effectiveness of active object
and scene context pooling.

Method Verb Noun Action
LSTA 47.21/78.38 22.19/45.65 15.09/30.79
LSTA + active object 47.43/77.39 22.67/45.65 15.55/32.23
LSTA + scene context 46.7/77.66 22.34/44.12 15.3/32.30
EgoACO 48.25/79.09 22.78/45.71 16.63/33.31

4.3.2 Ablation on EgoACO
Tab. 3 reports the results of the ablation study done for
analyzing the impact of active object and scene context pool-
ing described in Sec. 3.3. A CNN-LSTA model is chosen as
the baseline for this study. We first added the object-centric

stream to the baseline, resulting in +0.22%, +0.48% and
+0.46% for verb, noun and action prediction performances,
respectively. Then we applied the scene context stream to
the baseline. This results in an improvement of +0.21%
for action recognition accuracy. Adding both object-centric
and scene context branches to the baseline results in our
final model, which provides a performance gain of +1.04%,
+0.59% and +1.54% for verb, noun and action, respectively.

We report further ablation study to validate the impor-
tance of object features stream and scene context stream. In
this, we first remove the object stream and use scene context
stream for noun prediction. i.e., noun is predicted from dctx

instead of dobj . This results in a drop of −3.37% (13.26%) in
action recognition accuracy. By replacing dctx with dobj , the
action recognition accuracy drops by an absolute −2.52%,
from 16.63% to 14.11%. This shows that the two descriptors
encode different information from the video, due to the
variations in attention computation and how the descriptors
across frames are pooled, as explained in Sec. 3.3.

Next we evaluated the effectiveness of bias control, as
introduced in Sec. 3.5, in modeling the inter-dependencies
among the three prediction tasks. In this, we remove the
application of linearly mapped action logits from the verb
and noun classifiers. This results in an accuracy of 43.76%,
10.22% and 13.07% for verb, noun and action recognition,
respectively. The larger drop in noun accuracy (−12.56%)
shows that allowing the action score (generated from dact

which receives direct supervision from verb and action
labels) to influence the noun prediction allows EgoACO to
better model the dependencies present in the label structure.
This is more relevant in the case of egocentric videos, where
the scene is cluttered with many objects, of which only one
is the active object. This bias control allows the model to
discard those objects present in the scene that cannot co-
occur with the verb to form an action category, thereby
improving noun prediction performance.

TABLE 4: Analysis on the validation split of EPIC-
KITCHENS dataset to validate the effectiveness of training
EgoACO in a multi-task fashion.

Supervision Verb Noun Action
V + N 44.31/74.53 19.09/38.46 12.27/32.46

A 38.17/68.23 16.15/37.44 11.65/24.26
V + N + A 48.25/79.09 22.78/45.71 16.63/33.31

4.3.3 Analysis on the Effect of Multi-task Learning
As mentioned before, actions in egocentric datasets are gen-
erally defined as a combination of verb-noun pairs. Thus,
one can train a network to predict the action label alone or
verb and noun labels. In this section, we study how one can
effectively utilize the different annotations available in the
dataset. Tab. 4 reports the result of this study. The results
are reported by changing the supervision provided to the
network without altering its architecture. From the table,
one can see that supervision using all three annotations
results in a significant improvement in action recognition
accuracy. Using all the three annotations allows the network
to model the inter-dependencies among the labels and to
capture the semantics from the shared pool of features,
thereby improving its recognition performance.
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4.3.4 Comparison to Related Approaches
In this section, we compare class activation pooling with
two related approaches, attentional pooling [19] and class
activation mapping (CAM) [77], for attention generation.

By changing the cardinality of the attention dictionary
weights A in Eq. 6, class activation pooling collapses to at-
tentional pooling [19]. Precisely, attentional pooling is CAP
with a dictionary of one element,A = {a ∈ RK×1} and thus
ac∗ = a in Eq. 6. A single free parameter a is responsible for
attending to the discriminant features in the scene. To study
the effectiveness of our dictionary learning approach, we
replace class activation pooling with attentional pooling for
generating active object and scene context descriptors. We
also update the recurrent attention and memory attention
mechanisms in LSTA with attentional pooling. A drop of
−2.77% (13.86%) in action recognition accuracy, compared
to EgoACO, is observed. This shows the effectiveness of our
flexible model consisting of a dictionary of weights.

CAM [77] is a special case of CAP where the classifier
weights used to generate prediction scores serve as attention
weights too. Precisely, B = A in Eq. (6). We replace CAP
in EgoACO with CAM, that is, we use the noun classifier
weights as the active object dictionary and action classifier
weights as the scene context dictionary. We further update
LSTA to use the verb classifier weights as the dictionary
for recurrent attention. Using CAM for attention resulted
in a degradation of −3.56% (13.07%) in action recognition
accuracy compared to CAP (16.63%). This validates the ef-
fectiveness of CAP over CAM as a self-attention mechanism.

4.3.5 Attention Maps Visualization
In Fig. 4 we visualize the attention maps generated by
our model on samples from the validation split of EPIC-
KITCHENS dataset. From the figures one can see that the
recurrent attention in LSTA tracks hands or hand-object
interface, enabling the network to improve verb prediction.
On the other hand, the object stream attention is able to
localize the discriminative regions that are important for
recognizing the noun label, such as regions of the pan.
The context stream attention is looking at regions in each
frame, independently, that can assist in action prediction
such as the hob and pan in Fig. 4b and regions of the sink
in Fig. 4a. Fig. 4c show the attention maps generated by the
network for a sample with wrong predictions. The ground
truth labels for verb, noun and action of this sample are
put, pineapple and put_pineapple, respectively. The
categories predicted by the network are put, bowl and
put_bowl. In this example, the object stream attention is
stronger in the third frame and it is near the hand-object
(bowl) rather than on the regions containing pineapple.
This forces the network to make a wrong prediction for the
object category. It should be noted that the three descriptors
dobj ,dctx,dact are computed from different features of the
backbone CNN following different spatio-temporal aggre-
gation. Thus their descriptors will be different even if the
attention visualizations look similar.

4.4 Comparison with State-of-the-Art
We compare the performance of EgoACO with state-of-the-
art approaches on EPIC-KITCHENS in Tab. 5. The first part

of the table lists the methods that use multiple data modal-
ities such as optical flow and/or audio while the second
section consists of methods that use RGB frames alone. We
report the performance of our method using R2D-34, R2D-
50, R2D-101 and R(2+1)D-34 backbone CNNs. With the same
backbone, R2D-34, we improve the performance of LSTA
from our prior work [54] by +1.37% and 2.45% on action
for S1 and S2 splits, respectively. The larger improvement
in S2 split shows that our method is more generalizable.
Compared to popular action recognition approaches such as
TSN [68], M-TRN [76] and TSM [34] and their corresponding
two-stream approaches, with the same backbone CNN R2D-
50, EgoACO results in a better recognition performance on
both S1 and S2 splits with less computational complexity.

With R2D-101 backbone, we improve action recognition
performance over all methods that use multiple data modal-
ities on split S2 while on S1, we rank second to TBN [28]
which uses audio modality in addition to RGB and optical
flow. Considering the methods that use RGB alone, our
approach, with R2D-101, is superior to LFB [71], which uses
an object detector and is pre-trained on Kinetics dataset.

With an R(2+1)D-34 [65] backbone pre-trained on IG-
Kinetics-65M dataset, we outperform all state-of-the-art ap-
proaches by a large margin on S1 split. SAP [70] uses two
R3D-50 backbone CNNs for verb and noun feature genera-
tion along with a Faster R-CNN [47] based on ResNeXt-101-
FPN [72] for object detection. Despite using this high capac-
ity model that operates on a larger number of frames (64)
from the video, SAP obtains an action recognition accuracy
of 34.8%, compared to the 37.32% (+2.52%) of EgoACO
on S1 split while both approaches perform comparably
on S2 split. Compared to R(2+1)D-34 [18] and R(2+1)D-
152 [18], EgoACO results in an improvement of +2.92%
and +2.82% in action recognition accuracy on S1 split, with
far less computational complexity. On S2 split, EgoACO is
comparable to R(2+1)D-34 while R(2+1)D-152 outperforms
EgoACO by 2.25%. It should be noted that the R(2+1)D
approach from [18] independently trains two different back-
bone CNNs for verb and noun predictions. On the other
hand, EgoACO relies on the shared features extracted from
a single backbone CNN. The improvement obtained by
plugging in EgoACO head on top of the R(2+1)D-34 back-
bone shows that EgoACO is capable of leveraging the inter-
dependencies among the three different annotations. This
is made possible by the self-attention mechanism based on
CAP that enables the network to focus on different regions
in the video for generating effective video descriptors.

In Tab. 6, we report the performance of our method on
EGTEA Gaze+ dataset and compare against state-of-the-art
approaches. We report both micro and macro metrics on all
three splits of the dataset. We also report updated results
(micro metrics) of our previous approaches, Ego-RNN [57]
and LSTA [54]. Methods that use multiple data modalities
and those using RGB frames are separated into two sections.
We report the results using R2D-101 CNN. The network
is fine-tuned from the EPIC-KITCHENS pre-trained model.
From the table, it can be seen that our method outperforms
all other approaches, including those that use multiple
modalities of data [5], [14], [25], [30], [39], [51], [57], [68]
and additional annotations in the form of gaze [25], [30],
[39] and object detections [14], [70].
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Fig. 4: Attention maps generated by dobj (first row), dctx (second) and LSTA (third) for three samples from the validation
split of EPIC-KITCHENS. We show 10 frames uniformly sampled from the 20 frames applied as input to the network.

5 CONCLUSION

We presented EgoACO, an egocentric action recognition
framework leveraging self-attention dictionaries in a rank-
1 approximation of second order pooling to encode video
frame features into object, context, action descriptors for
clip classification. For the action descriptors we designed a
recurrent encoding scheme based on it, LSTA, that extends
LSTM with built-in attention on the input and on the mem-
ory propagation. LSTA is a general sequence learning model
that can be plugged into RNN based video architectures.
Self-attention endows EgoACO with built-in visual expla-
nation that aid learning from video-level labels, and help
interpreting predictions. We performed a detailed analysis

of EgoACO on two large scale egocentric action recognition
benchmarks, EPIC-KITCHENS and EGTEA Gaze+. Com-
pared to other methods that use large scale pre-training,
multi-modal input or extra annotations such as gaze, hand
masks, object detections, etc., EgoACO achieves competitive
or state-of-the-art recognition performance, showing its ef-
fectiveness in addressing egocentric action recognition.
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TABLE 5: Comparison of recognition accuracies with state-of-the-art on EPIC-KITCHENS dataset. †: Taken from [46]; ‡:
Also uses Faster R-CNN for object detection; ††: Taken from [18], using a lower resolution (112 × 112) than that used to
report the results (128× 128); ∗: Computed using publicly available implementation.

Method Backbone Pre-train S1 S2 FLOPs (G) Params (M)Verb Noun Action Verb Noun Action

M
ul

ti
m

od
al TSN [68]† R2D-50 ImNet 55.5 41.28 26.89 45.75 25.13 15.40 68.29×10∗ 48.93

TSM [34]† R2D-50 ImNet 62.37 41.88 29.90 51.96 25.61 17.38 68.29×10∗ 48.99
M-TRN [76]† R2D-50 ImNet 62.68 39.82 29.41 52.03 25.88 17.86 68.29×10∗ 52.49

TBN [28] BNInc ImNet+UCF 64.75 46.03 34.80 52.69 27.86 19.06 173.74∗ 32.64
RU-LSTM [14] BNInc‡ ImNet 56.93 43.05 33.06 43.67 26.77 19.49 - -

R
G

B
on

ly

TSN [68]† R2D-50 ImNet 49.71 39.85 23.97 36.70 23.11 12.77 33.12×10 24.48
TSM [34]† R2D-50 ImNet 57.88 40.84 28.22 43.50 23.32 14.99 33.12×10 24.48

M-TRN [76]† R2D-50 ImNet 60.16 38.36 28.23 46.94 24.41 16.32 33.12×10 25.33
LSTA [54] R2D-34 ImNet 58.25 38.93 30.16 45.51 23.46 15.88 92.03 44.28
LFB [71] R3D-50-NL‡ Kin 60.0 45 32.7 50.9 31.5 21.2 - -

R(2+1)D [18] R(2+1)D-34 IG-Kin-65M 63.3 46.3 34.4 55.5 33.6 23.7 399.56×10∗ 127.4
R(2+1)D [18] R(2+1)D-152 IG-Kin-65M 65.2 45.1 34.5 57.3 35.7 25.6 >504×10†† 236

SAP [70] R3D-50‡ Kin 63.2 48.3 34.80 53.2 33.0 23.9 - -

EgoACO

R2D-34 ImNet 60.38 40.33 31.53 47.97 25.30 18.33 117.77×2 74.2
R2D-50 ImNet 61.97 41.83 32.11 47.29 26.39 18.71 154.37×2 116.22
R2D-101 ImNet 61.85 42.03 33.22 51.01 28.99 21.41 228.92×2 135.21

R(2+1)D-34 IG-Kin-65M 66.88 46.28 37.32 55.86 31.44 23.35 643.56×2 167.02

TABLE 6: Comparison of recognition accuracies with state-of-the-art on EGTEA Gaze+ dataset. †: Taken from [30]; ††:
Implemented by us; ‡: Also uses Faster R-CNN for object detection.

Method Backbone Pre-train Macro Micro
Split 1 Split 2 Split 3 Avg Split 1 Split 2 Split 3 Avg

TSN [68]†† R2D-34 ImNet 58.01 55.01 54.78 55.93 46.76 45.22 45.56 45.85
I3D [5]† I3D-IncV1 Kin - - - - 49.79 - - -

Li et al. [30] I3D-IncV1 Kin - - - - 53.30 - - -
Ego-RNN [57] R2D-34 ImNet 62.17 61.47 58.63 60.76 53.84 52.37 50.85 52.35

MCN [25] R3D-50-NL Kin 62.6 - - - 55.7 - -
RU-LSTM [14] BNInc‡ ImNet - - - 60.20 - - -

LSTA R2D-34 ImNet 64.24 62.86 58.49 61.86 54.79 55.36 48.89 53.01
Lu et al. [39] I3D-IncV1 Kin 68.60 65.33 63.98 65.97 60.54 55.21 55.32 57.02

I3D [5]† I3D-IncV1 Kin - - - - 47.26 - - -
eleGAtt [74]†† R2D-34 ImNet 59.1 57.07 54.87 57.01 51.26 45.97 46.41 47.88

SAP [70] R3D-50‡ Kin 64.1 62.1 62.0 62.7 - - - -
EgoACO R2D-101 ImNet+EPIC 68.69 68.45 63.78 66.97 61.6 59.56 56.33 59.16

PID2019-105093GB-I00 (MINECO/FEDER, UE), CERCA
Programme/Generalitat de Catalunya, and ICREA under
the ICREA Academia programme.
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