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Abstract 

Background: Quantification of tumor heterogeneity is essential to better understand 
cancer progression and to adapt therapeutic treatments to patient specificities. Bioin-
formatic tools to assess the different cell populations from single-omic datasets as bulk 
transcriptome or methylome samples have been recently developed, including refer-
ence-based and reference-free methods. Improved methods using multi-omic datasets 
are yet to be developed in the future and the community would need systematic tools 
to perform a comparative evaluation of these algorithms on controlled data.

Results: We present DECONbench, a standardized unbiased benchmarking resource, 
applied to the evaluation of computational methods quantifying cell-type heteroge-
neity in cancer. DECONbench includes gold standard simulated benchmark datasets, 
consisting of transcriptome and methylome profiles mimicking pancreatic adeno-
carcinoma molecular heterogeneity, and a set of baseline deconvolution methods 
(reference-free algorithms inferring cell-type proportions). DECONbench performs a 
systematic performance evaluation of each new methodological contribution and 
provides the possibility to publicly share source code and scoring.

Conclusion: DECONbench allows continuous submission of new methods in a user-
friendly fashion, each novel contribution being automatically compared to the refer-
ence baseline methods, which enables crowdsourced benchmarking. DECONbench 
is designed to serve as a reference platform for the benchmarking of deconvolution 
methods in the evaluation of cancer heterogeneity. We believe it will contribute to 
leverage the benchmarking practices in the biomedical and life science communities. 
DECONbench is hosted on the open source Codalab competition platform. It is freely 
available at: https:// compe titio ns. codal ab. org/ compe titio ns/ 27453.
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Background
The recent development of high-throughput sequencing technologies has enabled the 
characterization of the genetic regulations underlying diseases such as cancer. Important 
advances have been made but studies often overlook the fact that tumors are made up of 
cells from different identities and origins. The quantification of tumor heterogeneity is of 
great interest to the biomedical research community because the various components of 
a tumor are key factors in tumor progression, clinical outcome and response to therapy. 
To isolate a cell population of interest, microdissection techniques can be performed on 
clinically heterogeneous tissue samples, but these advanced techniques are not feasible 
in clinical routine. In addition, single-cell technologies, while promising, have intensive 
protocols and require expensive and specialized resources, currently hindering their 
establishment in a clinical setting [1]. Instead, deconvolution methods can be used to 
infer cell-type composition in silico from bulk measurements, which enable the analysis 
of a large number of publicly available omic datasets. Bioinformatics tools that assess the 
different cell populations from bulk transcriptome [2–5] and methylome [6–9] samples 
have been recently developed, including reference-based and reference-free methods.

Recent efforts have been made to objectively compare existing tools in order to guide 
the users. In particular, two recent benchmark studies proposed a comprehensive com-
parison of transcriptome-based deconvolution methods using various parameters and 
simulation settings [10, 11]. In the same vein, the DREAM challenge proposed in 2019 
[12] a data challenge dedicated to the prediction of immune cell types, showing the 
emerging spirit towards reproducibility and benchmarking. Although interesting, all 
these efforts are time-bound and cannot take into account upcoming novel methods. 
Moreover, the possibility to integrate different types of omic data to infer cell-type pro-
portions is currently under-studied.

Standardized unbiased benchmarking resources are essential to evaluate the perfor-
mances of computational methods. Indeed, these resources should avoid falling into the 
‘self-assessment trap’, in which researchers are unrealistically expected to fairly com-
pare their own computational method with other similar algorithms [13, 14]. In addi-
tion, unbiased attempts to benchmark computational methods are often static in space 
and time, preventing further contributions of other scientists or the assessment of new 
methods developed after the publication of the benchmark [15]. Recent collective ini-
tiatives provided formal guidelines and unified frameworks to improve unbiased per-
formance evaluation [16]. For instance, the Global Alliance for Genomic and Health 
(GA4GH) published an open access benchmarking tool to assess germline small vari-
ant calls in human genomes [17]. More recently, BEELINE, a uniform interface to evalu-
ate Gene Regulatory Network inference from single-cell data, was published and made 
freely accessible in the form of a docker image [18].

In this project, we built on a previous HADACA (Health Data Challenge consortium) 
benchmarking study [7] to develop a standardized benchmark framework for accurately 
evaluating quantification of tumor intra-heterogeneity from a multi-omic dataset. First, 
we built in silico 10 paired methylome and transcriptome benchmark datasets, using 
pancreatic cancer (PDAC, pancreatic adenocarcinoma) as a case study. These benchmark 
datasets were made realistic by the integration of the latest knowledge on PDAC biology 
[19–21] in the simulation models and can be used as ‘truth’ to evaluate computational 
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methods quantifying tumor heterogeneity. Second, we defined Mean Absolute Error 
(MAE) on estimated cell-type proportions and computational time as standard perfor-
mance metrics. Third, we embedded the benchmark dataset and the scoring algorithm 
into a web platform called DECONbench. This web platform enables continuous and 
crowdsourced benchmarking, by asking participants to submit source code of their 
algorithm. Each submission is therefore run by the platform on the benchmark data-
set and results generated in a reproducible way. Fourth, we implemented on the plat-
form baseline methods based on some previously published deconvolution algorithms 
and tools. Therefore, DECONbench is an open resource to evaluate novel computational 
methods in an unbiased way. It provides a private general report on the overall perfor-
mances of the method submitted by any participant and offers the possibility to share all 
source code of the contributing methods, as well as performance evaluation on a public 
leaderboard.

Here we present DECONbench, an innovative public benchmarking platform, open 
source and freely available, aiming at comparing integrative deconvolution methods 
for tumor heterogeneity quantification. This framework supports both crowdsourcing 
benchmarking (collaborative and competitive assessment of the methods) and continu-
ous benchmarking (possibility to continuously integrate novel methods), two features 
that should contribute to the widespread community adoption of benchmarking good 
practices [15, 22]. To conclude, DECONbench is an open online benchmark framework 
including gold standard benchmarking datasets from different types of omic data, state-
of-the-art baseline computational methods and it enables the submission of new meth-
ods for evaluation.

Implementation
The benchmarking platform infrastructure

DECONbench takes advantage of the Codalab web-based platform (https:// compe titio 
ns. codal ab. org/) to provide a software environment for evaluating deconvolution meth-
ods. Users submit a full program that is applied to the provided benchmark datasets and 
compared to the ground truth. DECONbench outputs a performance score displayed on 
the leaderboard (Fig. 1).

Usage

DECONbench is optimized to execute methods developed in R statistical program-
ming language, using a docker image provided on our website. The benchmark is 
structured around an ingestion program used as a wrapper object to execute an R 
program. Should anyone wish to benchmark a method coded in another language, 
R could then be used as a script language to execute the given program by invok-
ing a System Command. A list of R packages installed on the docker image is as well 
provided. Users need: (i) to register to DECONbench on the participate tab and 
to download the starting kit and the public datasets; (ii) to develop an algorithm 
according to DECONbench guidelines; (iii) to submit their code (as a zip file) in 
the participate tab. Submitted algorithms are evaluated on DECONbench datasets 
and benchmarked with the other baseline methods. Users should note that methods 
relying on stochastic algorithms will give slightly variable performance on each run, 

https://competitions.codalab.org/
https://competitions.codalab.org/
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unless an initialization is specified in the source code. Resulting scores appear on 
the leaderboard and a fact sheet is edited summarizing the performances. Impor-
tantly, users can choose whether they want their algorithm to be public or private.

Results
Provided benchmark datasets

We have generated paired transcriptome and methylome benchmarking data-
sets from primary cells from pancreatic tumors and sorted cells from public data-
sets (Fig.  2). Gold standard heterogeneous samples were simulated using mixtures 
of individual cell populations (fibroblast, immune cells, normal epithelial cells and 
cancer cells, see “Methods” section). Exact sample compositions are not accessible 
to the users. Participants are facing a deconvolution problem to solve the following 
model: D = TA , with D the complex matrix of molecular profiles measured on het-
erogeneous samples; T  , a reference matrix of cell-type specific molecular profiles; 
and A , a proportion matrix of cell-type abundance in each sample. The aim of the 
competition is to find the best estimate of the proportion matrix A . Methods are 
evaluated on their accuracy to estimate the cell-type proportions per sample from 
transcriptome and/or methylome heterogeneous profiles. The discriminating metric 
is the mean absolute error (MAE, see “Methods” section) between the estimate and 
the ground truth.

Fig. 1 Overview of the DECONbench platform. The platform proposes a set of 8 baseline deconvolution 
methods and benchmark datasets consisting of paired methylome and transcriptome of in silico mixtures 
from pancreatic tumors. The platform releases the performance of each method on a leaderboard and 
provides plots for deeper evaluation. New methods are automatically compared to the existing ones
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Selection of baseline methods from a data challenge

We used these unreleased benchmark datasets in a data challenge aiming at infer-
ring cell-type proportions from a cancer dataset including both transcriptome and 
methylome profiles (https:// tinyu rl. com/ hadac a2019). Baseline methods provided 
on DECONbench were collectively designed, tested and implemented during the 
challenge. They are composed of two steps: first, we operate a feature selection 
process to reduce the dimensions of the dataset, second, we apply a deconvolution 
algorithm. These algorithms consist of various statistical tools already published, 
based on unsupervised source separation approaches: ICA-based (Independent 
Component Analysis) [23–25] or NMF-based (Non-negative Matrix Factorization) 
[8, 9, 26]. Each baseline method was designed to be applied either on single-omic 
(see Table 1, Data type “RNA” or “DNAm”) or in an integrated fashion on both the 
transcriptome and the methylome dataset (see Table 1, Data type “both” and Multi-
omic integration strategy). As baseline on DECONbench, we implemented the eight 
methods that predict the real cell proportions with the highest accuracy (i.e. lowest 
MAE between the estimate and the ground truth) (Table  1). All baseline methods 
source code are publicly accessible on the platform.

Fig. 2 Benchmark dataset construction: a 5 different cell populations present in pancreatic tumors were 
considered. b Raw transcriptome and methylome profiles of these different cell populations were extracted 
from various sources (PDX model, tissues or isolated cells). c Raw cell type profile matrices were preprocessed 
together (Feature filtering, normalization, signal transformation, sample aggregation) to avoid any batch 
effect. After pre-processing, transcriptomic data are constituted of log2-transformed expression counts 
on 21,566 genes and methylome data of beta-values on 772,316 EPIC array CpG sites. d In silico Dirichlet 
distributions have been used based on realistic proportions defined by the anatomopathologist expertise (J. 
Cros). e Paired methylome and transcriptome of in silico mixtures from pancreatic tumors were obtained by 
considering D = T × A, with T the cell-type profiles (matrix of size M × K, with M the number of features and 
K = 5 the number of cell types) and A the cell-type proportion per patient (matrix of size K × N, with N = 30 
the number of samples) common between both omics. One training set (DMET and DRNA) is accessible to the 
users (obtained by one realization of A). The algorithms are compared on 10 test sets (obtained from 10 other 
realizations of A) that are hidden on the platform

https://tinyurl.com/hadaca2019
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Performance of the baseline single‑omic methods

We run all the baseline methods on 10 different simulated datasets and computed the 
corresponding MAEs (Fig. 3). The best algorithms based on single-omic datasets were 
the r_WNM method for RNA-based data (mean MAE of 0.024) and the m_MDC 
method for DNAm-based data (mean MAE of 0.038). Both are NMF-based algo-
rithms, details on the methods can be found in the "Methods" section. DECONbench 
provides also the computing time for each method, as an indicator of algorithms opti-
mization. It is worth underlying that the computation time of m_MDC algorithm is 
significantly higher than the other DNAm-based methods we explored, suggesting 
that even high performance single-omic algorithms might be further optimized.

Performance of the integrative multi‑omics methods

Next, we tested basic multi-omic approaches averaging the results of single-omic 
methods: (i) the b_WIC method averages the proportion matrices given by the inde-
pendent applications of independent component analysis (ICA) based deconvolution 
approach to transcriptome and methylome data, (ii) the b_MEA method computes 
an average proportion matrix from the output of the two best single-omic methods 
r_WNM and m_MDC. Averaging the ICA based approaches (b_WIC) gave inter-
mediate performances (multi-omic accuracy equivalent to the mean of single-omic 
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accuracies). Similarly, we did not observe increased performances when averaging the 
predicted proportion matrices of the two best methods (b_MEA).

We also proposed an integrative method (b_COM) based on transcriptome and 
methylome data. The best performing methylome-based method (m_MDC) relies 
on the MeDeCom tool which is a NMF-based deconvolution algorithm that performs 
multiple random initializations of the cell-type proportion matrix. Instead of using ran-
dom initialization, we initialized the MeDeCom algorithm with the proportion matrix 
obtained from a NMF-based deconvolution of transcriptome data. Surprisingly, we did 
not observe a substantial performance improvement when integrating RNA deconvo-
lution output into DNAm deconvolution algorithm (b_COM method, resulted in an 
average error decrease of 2.12% compared to m_MDC). These results highlight the need 
to further develop new methods to improve integration of multi-omic deconvolution 
algorithms.

Toward crowdsourced and continuous benchmarking

As an example of continuous benchmarking, we used DECONbench to assess the per-
formances of two recently evaluated single-omic algorithms in a comprehensive bench-
mark of reference-based deconvolution pipelines. We selected the Ordinary Least 
Square (OLS) and Robust Linear Regression (RLR) approaches, which have been shown 
to be effective in estimating cellular composition of simulated bulk healthy pancreatic 
transcriptomes [10]. We implemented the methods as recommended by Avila Cobos 
et al., including the generation of cell-type reference profiles from a pancreatic single-
cell dataset [27] (see supplemental information for source code: Additional file 1: Source 
code). Interestingly, the performance of these methods is not better than the baseline 
methods, possibly due to the use of healthy pancreatic cells as a reference to estimate 
the composition of a simulated pancreatic adenocarcinoma (Additional file 1: Figure S1). 
These results suggest that further optimization should be considered to properly assess 
the performance of the OLS and RLR methods. This crowdsourced and continuous inte-
gration is now made possible thanks to our DECONbench platform.

Conclusion
The DECONBench platform is a unique opportunity to compare the performance of 
deconvolution methods on different omics data. It can be used to assess the perfor-
mance of newly developed methods by applying them on high quality benchmark data-
sets in a user-friendly fashion. Currently, the accuracy of new methods can be compared 
with the eight baseline methods that have been included in the benchmarking platform. 
As compared with previous time-bound comprehensive benchmarks of deconvolution 
methods (see Avila Cobos et al. [10]), our platform provides the possibility to continu-
ously test and integrate newly developed methods, rather than focusing on an exhaustive 
comparison of existing tools. The baseline methods and user’s methods performances 
are reported on the leaderboard and on the graphical output of DECONBench (Fig. 4). 
The source code of the baseline methods can be downloaded directly on the DECON-
bench platform. The structure of DECONbench is open to evolution. Work is ongoing 
to generate new benchmark datasets including other omic types that will be added to 
the platform. In the near future, we plan to expand the usability of DECONbench by 
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offering the possibility for owners of benchmark datasets to directly upload them on the 
platform.

DECONbench evaluation framework presents standard benchmark limitations [15, 
16], such as the use of artificial in silico simulated data that do not capture the real 
experimental complexity, or the ranking of the methods based on a single performance 
metric. We would like to emphasize that MAE as scoring metric is only an imperfect 
proxy to evaluate quantification of tumor heterogeneity, as it does neither reflect the 
accuracy of cell-type specific molecular profile prediction (i.e. biological significance of 
inferred components), nor the correlation of estimated heterogeneity with real clinical 
outputs (such as prognosis or survival).

Overall, our platform will guide computational biologists to use the best proposed 
deconvolution algorithms and allow health professionals and biologists to obtain more 
accurate information regarding the composition of their samples, an important step 
towards personalized healthcare.

Methods
Data collection and preprocessing

For both transcriptome and methylome in silico mixtures, the same five cell types pre-
sent in pancreatic tumors were considered (Fig. 2a, b): tumor cells A, tumor cells B, nor-
mal pancreatic cells, immune cells and fibroblasts. Pure cell type transcriptome profiles 
were retrieved from the GTEX RNA-seq dataset for the immune and normal pancreatic 
cell types (https:// gtexp ortal. org/) and a previously published pancreatic tumor patient 
derived xenograft (PDX) RNA-seq dataset (E-MTAB-5039) for the two tumor cell types 

Fig. 4 DECONbench graphical outputs. a Boxplots of the Mean Absolute Errors (MAE) of the estimations 
of the A matrices (i.e. proportion matrices) obtained for each method that uses the transcriptome only 
(yellow), the methylome only (blue) or both omics (green). Boxplots of the baseline methods and other 
existing methods are shown in white, whereas the user’s method is shown in red. b Heatmap of each 
A-matrix estimate are generated. The cell populations are in rows and the samples in columns. c Heatmaps of 
Absolute Error of each proportion estimate are generated. The cell populations are in rows, and the samples 
in columns

https://gtexportal.org/
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(total of 96 pure transcriptome profiles with 3 to 33 replicates per cell type) (Fig.  2c). 
Pure cell type methylation profiles were retrieved from the same samples of the PDX 
dataset for the two tumor cell types and tissue or isolated cell profiles were used for the 
microenvironment cell types (total of 32 methylome pure profiles with 3 to 15 repli-
cates per cell type). Transcriptome dataset was restricted to protein coding genes and 
subjected to TMM normalization using the edgeR R package and log2 transformation. 
For the methylation data, we used the beta-value DNA methylation scores and removed 
probes with low-quality, that contained SNPs or located on sex chromosomes. Data 
were then adjusted for color balance bias and normalized between samples using the 
SSN (shift and scaling normalization) method using the lumi package functions (Fig. 2c). 
For both omics, the median of the replicate profiles for each cell type was calculated 
to compute the TRNA and TMET matrices, representing the cell type specific profiles for 
each omic. The median calculation may prevent underlying germline differences. These 
matrices were used for the in-silico mixtures, as detailed in the next sections (Fig. 2d, e).

Formulation of the deconvolution problem

When a sample is constituted of K cell types, we assume that the level of methylation or 
gene expression observed in a bulk measurement of this biological sample (containing 
different cell types) results from a linear mixture of the K cell-type specific molecular 
profile weighted by the true cell-types proportions present in the sample. This assump-
tion leads to the following models:

where DMET is a (M × N) methylation matrix from N  bulk heterogeneous samples with 
DMET {m,n} the measured measured methylation (beta-value) of the mth CpG site for the 
nth sample representing the measured methylation (beta-values) for  N samples; DRNA 
is a (G × N) gene expression matrix from the same N bulk heterogeneous samples with  
DRNA{g ,n} the measured gene expression (normalized pseudo-log counts) of the gth gene 
for the nth sample; TMET is an unknown (M × K) reference-profile matrix with TMET {m,k}

 
representing the average methylation beta-value of CpG site m for the cell-type k ; TRNA 
is an unknown (G × K) reference-profile matrix with TRNA{g ,k}

  representing the average 
expression value (normalized pseudo-log counts) of gene g for the cell-type k ; and A a 
(K ×  N) matrix representing the cell-type composition of the N  heterogeneous sam-
ples for K  cell types (i.e. the cell-type proportions), with A{k ,n}  the proportion of the 
nth sample for the kth cell type. Specifically, the A proportion matrix is shared between 
the two models, as DMET and DRNA bulk molecular profiles are measured on the same 
biological samples. In the methods tested, A is estimated with the following constrain: 
∑K

k=1 Akn = 1 .

Data modeling

The benchmark simulated bulk molecular profiles are constituted of 10 paired DMET and 
DRNA matrices. Simulations are processed as follows:

(1)DMET = TMETA

(2)DRNA = TRNAA
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Step 1: Simulation of the shared proportion matrices

The mixture proportions of the matrices A were sampled from a Dirichlet distribution 
based on realistic biological composition of a pancreatic tumor, with the variation of 
Dirichlet parameters set to α0 = 10 for global cell composition (fibroblasts, immune, 
normal epithelial and cancer epithelial), and a variation of Dirichlet parameters set to  
α0 = 1 for cancer cells subpopulations (cancer basal-like and cancer classic). Exact pro-
portion parameters are kept private to ensure unbiased evaluation of the methods.

Step 2: Simulation of the bulk D bulk matrices

We use the mathematical models (1) and (2) to simulate the bulk matrices, as previ-
ously described in Decamps et al. (2020) [7]. DMET is a methylation matrix composed of 
772,316 methylation values (EPIC array CpG sites) for N = 30 samples,  DMET was con-
structed as follows: DMET = TMET A, with TMET a matrix of K = 5 cell type-specific meth-
ylation reference profiles (methylation beta-values for each cell type considered: tumor 
cells A, tumor cells B, normal pancreatic cells, immune cells and fibroblasts), and A a (K 
× N) proportion matrix composed of K = 5 cell type proportions for each N = 30 sample. 
 DRNA is a transcriptome matrix composed of 21,566 gene expression values (normalized 
log-2 transformed RNA-seq counts values for each cell type) for N = 30 samples.  DRNA 
was constructed according to the following model: DRNA = TRNA A, with TRNA a matrix 
of the K = 5 cell type-specific transcriptome reference profiles (21,566 gene expression 
values for each cell type: tumor cells A, tumor cells B, normal pancreatic cells, immune 
cells and fibroblasts), and A the same (K × N) proportion matrix used to simulate  DMET.

Step 3: Simulation of a technical noise

We added a generic Gaussian noise on each bulk simulated matrix using the following 
parameters: mu = 0 and sd = 0.05.

Step 4: Replication of the simulations

To ensure robustness of the method’s evaluation, we generated 10 replications of paired 
 DMET and  DRNA matrices, using independent simulation of A proportions matrices. For 
each pair of  DMET and  DRNA matrices, the same  TMET and  TRNA reference matrices were 
used.

Performance evaluation

The aim of deconvolution algorithms is to correctly estimate the proportion matrix A. 
We evaluated algorithm performances by computing the mean absolute error (MAE), as 
previously described in Decamps et al. (2020) [7]:

One training set (DMET and DRNA) is publicly available (the A, TRNA and TMET matrices 
used for compute DMET and DRNA matrices remain private, as they are directly involved 
in performance evaluation). The algorithms are evaluated on 10 test sets (DMET and 
DRNA), obtained from 10 independent realizations of A, given the simulation models 
DMET = TMET A and DRNA = TRNA A. These test sets are hidden on the platform to avoid 

(3)MAE =

∑N
n=1

∑K
k=1|Aestnk − Arealnk|

NK
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overfitting. During evaluation of baseline algorithms, each algorithm was run 5 times on 
each simulated set of data, to account for randomness in algorithm outputs.

Description of the baseline methods

The baseline methods we propose here are wrappers of already published unsupervised 
deconvolution algorithms (ICA-based or NMF-based). We assume here that A, TMET 
and TRNA are unknown and need to be estimated, either independently (single-omic 
pipelines) or integratively (double-omic pipelines). Before deconvolution, we systemati-
cally apply a pre-treatment step of dimensionality reduction based on feature selection. 
All baseline methods source code is downloadable on the DECONbench platform.

All baselines relies on unsupervised deconvolution algorithms, which consists in 
solving D = TA , either by ICA-based (i) or NMF-based (ii) approaches. (i) ICA-based 
approaches (r_WIC, m_WIC and b_WIC) consist of minimizing mutual information 
of sources by defining independent components. It is based on the fixed-point Fas-
tICA algorithm developed by Aapo Hyvärinen [24, 25]. (ii) NMF-based approaches 
(r_WNM, m_EDC, m_MDC, b_COM, b_MEA) aims to minimizing ||D − TA||2.

RNA_wICA (r_WIC, ICA‑based deconvolution on RNA)

The method RNA_wICA (r_WIC) uses transcriptomic data as input and is based on 
the ICA algorithm for both feature selection and deconvolution. It relies on the use 
of the functions “runICA” and “getGenesICA” developed by P. Nazarov (sablab.net/
scripts/LibICA.r) and the deconica R package [23].

STEP1: feature selection For the ICA-based feature selection, the function 
“runICA” is run at first with the parameters ncomp = 10 and ntry = 50. Then, the 
function “getGenesICA” selects top-contributing genes with a FDR of 0.2, the fea-
ture selection is done on these contributing genes belonging to a component hav-
ing an average stability greater than 0.8. Finally, duplicated genes are removed.
STEP2: deconvolution First, we perform FastICA unsupervised deconvolu-
tion (deconica::run_fastica is run with the parameters overdecompose = FALSE 
and n.comp = 5; remaining parameters are set to default). Second, we compute 
the abundance of the identified components, using the weighted-mean of the 
30-top genes of each Independent Component (IC), in each sample as, a surro-
gate of the component signal. The 30 most important genes of each ICA compo-
nent are extracted by the function deconica::generate_markers with the param-
eter return = "gene.ranked". These genes are used to weight the component scores 
in each patient (the weighted-score of a given IC in patient p corresponds to the 
weighted mean expression of the 30-top genes on that component. We used, 
in the function deconica::get_scores, the log counts of the ICA as “df ” param-
eter, the list of 30 genes as “markers.list” parameter, and the parameter sum-
mary = "weighted.mean". Finally, the estimated proportions are calculated from 
the inferred weighted-score with the function deconica::stacked_proportions_plot 
on the transpose of the deconica::get_scores output.
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DNAm_wICA (m_WIC, ICA‑based deconvolution on DNAm)

The method DNAm_wICA (m_WIC) uses DNA methylation data as input.

STEP1: feature selection It has no feature selection step.
STEP2: deconvolution The deconvolution step is based on ICA, similarly to what 
was described for the second step of RNA_wICA, but applied on the DNA meth-
ylation matrix.

both_wICA (b_WIC. ICA‑based deconvolution on RNAD and DNAm)

The method both_wICA (b_WIC) combines transcriptomics and DNA methylation 
information.

STEP1: feature selection It has no feature selection step.
STEP2: deconvolution The deconvolution is in two steps, one on each data type. 
The transcriptomics and DNA methylation data are separately deconvoluted with 
the same deconvolution step as in r_WIC and m_WIC respectively to estimate 
 AMET and  ARNA.
STEP3: integration Finally, the mean of both  AMET and  ARNA estimated proportion 
matrices is computed as the final method output. To compute the average, the cell 
types of the both deconvolution matrices are matched by iteration. The cell types 
of the methylation result matrix are reordered 1000 times, and the one that best 
correlates with the transcriptomic result matrix is kept.

RNA_wNMF (r_WNM, NMF‑based deconvolution on RNA)

The method RNA_wNMF (r_WNM), is a two step-approach that uses transcriptomic 
data as input.

STEP1: feature selection The first step uses ICA to perform a feature selection as 
described for RNA_wICA, although duplicated genes are kept. This step therefore 
allows genes that contribute to several components to be present several times in 
the data.
STEP2: deconvolution The deconvolution is based on sparse NMF and least-
squares optimization to minimize ||D − TA||2 [26]. It is called by the NMF::nmf 
function, with the parameter method = "snmf/r".

DNAm_EDec (m_EDC, NMF‑based deconvolution on DNAm)

STEP1: feature selection The method DNAm_EDec (m_EDC), uses DNA methyla-
tion data as input and follows the pipeline implemented in the R package medepir 
[7]. The feature selection is performed by medepir::feature_selection for keeping 
highly variable probes (5000 most variable probes).
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STEP2: deconvolution The NMF-based algorithm of the method EDec [9] is used 
for the deconvolution part, with the function medepir::Edec and all the selected 
probes as “infloci” parameter. The algorithm consist in minimizing the error term 
||D − TA||2 with constraints on methylation values: 0 ≤ A ≤ 1 and 0 ≤ T ≤ 1 and 
constraints on proportions 

∑K
k−1Akn = 1  where Akn  is the proportion of the nth 

sample for the  kth cell type.

DNAm_MeDeCom (m_MDC, NMF‑based deconvolution on DNAm)

STEP1: feature selection The method DNAm_MeDeCom (m_MDC), uses DNA 
methylation data as input and is based on the pipeline of the R package medepir. 
The feature selection is performed as for DNAm_EDec above to select the 5000 most 
variable probes.
STEP2: deconvolution The deconvolution step, however, uses the MeDeCom R pack-
age [8]. It is run with the function MeDeCom::runMeDeCom, with the lambda 
parameter set to 0.01. As EDec implementation of NMF algorithm, MeDeCom algo-
rithm consists in minimizing the error term ||D − TA||2 with constraints on methyla-
tion values: 0 ≤ A ≤ 1 and 0 ≤ T ≤ 1 ; and constraints on proportions 

∑K
k−1Akn = 1  

where  Akn is the proportion of the nth  sample for the  kth  cell type. It also uses a 
regularization function that favors methylation values close to 0 or 1.

both_wNMFMeDeCom (b_COM, NMF‑based deconvolution on RNA and DNAm)

The method both_wNMFMeDeCom (b_COM) combines transcriptomics and DNA 
methylation information. It is the combination of the two methods RNA_wNMF and 
DNAm_MeDeCom. The method r_WNM is first applied to the RNAseq matrix.

STEP1: feature selection The DNA methylation matrix is pre-treated as described in 
the m_MDC method, with the selection of 5000 most variable probes.
STEP2-3: deconvolution-integration Finally, the MeDeCom algorithm is run on the 
DNAm data, with the result of r_WNM as the initialization parameter startA.

both_meanwNMFMeDeCom (b_MEA, NMF‑based deconvolution on RNA and DNAm)

The method both_meanwNMFMeDeCom (b_MEA), which integrates transcriptomics 
and DNA methylation, applies r_WNM to the transcriptomics matrix, m_MDC to the 
DNA methylation matrix.

STEP1: feature selection Feature selection is performed on  DMET and  DRNA matrices 
as described in r_WNM and m_MDC sections.
STEP2: deconvolution Deconvolution is performed on  DMET and  DRNA matrices as 
described in r_WNM and m_MDC sections to estimate  AMET and  ARNA matrices.
STEP3: integration We computed the mean of the two estimated  AMET and  ARNA 
matrices, similarly to b_WIC.
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Availability and requirements

Project name: DECONbench
Project home page: https:// compe titio ns. codal ab. org/ compe titio ns/ 27453
Operating system(s): Linux (CodaLab platform)/Debian (DECONbench)
Programming language: Python (CodaLab platform)/R (DECONbench)
Other requirements: none
License: Apache 2.0 (CodaLab platform)/CeCILL (DECONbench)
Any restrictions to use by non-academics: none

Abbreviations
DNAm: DNA methylation; FDR: False discovery rate; ICA: Independent component analysis; MAE: Mean absolute error; 
NMF: Non-negative matrix factorization; sd: Standard deviation; var: Variance.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04381-4.

Additional file 1: Figure S1: DECONbench benchmark of OLS and RLR methods: an example of graphical outputs 
of new contributions to the benchmark. Source code.
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