|
Records |
Links |
|
Author |
Antonio Hernandez; Carlo Gatta; Sergio Escalera; Laura Igual; Victoria Martin-Yuste; Manel Sabate; Petia Radeva |


|
|
Title |
Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Information Technology in Biomedicine |
Abbreviated Journal |
TITB |
|
|
Volume |
16 |
Issue |
6 |
Pages |
1332-1340 |
|
|
Keywords |
|
|
|
Abstract |
Segmentation of coronary arteries in X-Ray angiography is a fundamental tool to evaluate arterial diseases and choose proper coronary treatment. The accurate segmentation of coronary arteries has become an important topic for the registration of different modalities which allows physicians rapid access to different medical imaging information from Computed Tomography (CT) scans or Magnetic Resonance Imaging (MRI). In this paper, we propose an accurate fully automatic algorithm based on Graph-cuts for vessel centerline extraction, caliber estimation, and catheter detection. Vesselness, geodesic paths, and a new multi-scale edgeness map are combined to customize the Graph-cuts approach to the segmentation of tubular structures, by means of a global optimization of the Graph-cuts energy function. Moreover, a novel supervised learning methodology that integrates local and contextual information is proposed for automatic catheter detection. We evaluate the method performance on three datasets coming from different imaging systems. The method performs as good as the expert observer w.r.t. centerline detection and caliber estimation. Moreover, the method discriminates between arteries and catheter with an accuracy of 96.5%, sensitivity of 72%, and precision of 97.4%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1089-7771 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ HGE2012 |
Serial |
2141 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; David Masip; Eloi Puertas; Petia Radeva; Oriol Pujol |

|
|
Title |
Online Error-Correcting Output Codes |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
32 |
Issue |
3 |
Pages |
458-467 |
|
|
Keywords |
|
|
|
Abstract |
IF JCR CCIA 1.303 2009 54/103
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings one-versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
North Holland |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0167-8655 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
MILAB;OR;HuPBA;MV |
Approved |
no |
|
|
Call Number |
Admin @ si @ EMP2011 |
Serial |
1714 |
|
Permanent link to this record |
|
|
|
|
Author |
Laura Igual; Xavier Perez Sala; Sergio Escalera; Cecilio Angulo; Fernando De la Torre |


|
|
Title |
Continuous Generalized Procrustes Analysis |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
2 |
Pages |
659–671 |
|
|
Keywords |
Procrustes analysis; 2D shape model; Continuous approach |
|
|
Abstract |
PR4883, PII: S0031-3203(13)00327-0
Two-dimensional shape models have been successfully applied to solve many problems in computer vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can might be insufficient to capture large structural variability of some objects.
To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations, especially when the rotations are parameterized with Euler angles. To address this problem, we introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
OR; HuPBA; 605.203; 600.046;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ IPE2014 |
Serial |
2352 |
|
Permanent link to this record |
|
|
|
|
Author |
Laura Igual; Joan Carles Soliva; Sergio Escalera; Roger Gimeno; Oscar Vilarroya; Petia Radeva |


|
|
Title |
Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Computerized Medical Imaging and Graphics |
Abbreviated Journal |
CMIG |
|
|
Volume |
36 |
Issue |
8 |
Pages |
591-600 |
|
|
Keywords |
Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles |
|
|
Abstract |
We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
OR; HuPBA; MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ ISE2012 |
Serial |
2143 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Pujol; David Masip |

|
|
Title |
Geometry-Based Ensembles: Toward a Structural Characterization of the Classification Boundary |
Type |
Journal Article |
|
Year |
2009 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
31 |
Issue |
6 |
Pages |
1140–1146 |
|
|
Keywords |
|
|
|
Abstract |
This article introduces a novel binary discriminative learning technique based on the approximation of the non-linear decision boundary by a piece-wise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points – points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and non-linear behavior is obtained. The simplicity of the method allows its extension to cope with some of nowadays machine learning challenges, such as online learning, large scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database. Finally, we apply our technique in online and large scale scenarios, and in six real life computer vision and pattern recognition problems: gender recognition, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease severity detection, clef classification and action recognition using a 3D accelerometer data. The results are promising and this paper opens a line of research that deserves further attention |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
OR;HuPBA;MV;MILAB |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ PuM2009 |
Serial |
1252 |
|
Permanent link to this record |