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a b s t r a c t

Two-dimensional shape models have been successfully applied to solve many problems in computer
vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned
from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after
applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not
necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the
estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by
sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can
might be insufficient to capture large structural variability of some objects.

To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D
transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D
model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations,
especially when the rotations are parameterized with Euler angles. To address this problem, we
introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference
shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Procrustes analysis (PA) [1–3] is a form of statistical shape
analysis used to analyze the distribution of a set of shapes. Given
two shapes PA “superimposes” both shapes by optimally translat-
ing, rotating and scaling one shape towards the other. If more than
two shapes are registered, the problem is typically known as
generalized Procrustes analysis (GPA). GPA has been typically used
in computer vision as a first step to build 2D models of shape or
appearance of objects. These 2D models have been applied to solve
problems such as object recognition [4,5], facial feature detection
and tracking [6,7] and image segmentation [8,9]. In particular,
Point distribution models (PDMs) and active shape models (ASMs)
[11] are among the most popular techniques to learn 2D objects

models. PDMs and ASMs build the shape models from a 2D
training set of image landmarks. In PDMs and ASMs, first GPA is
used to remove rigid transformations and, then principal compo-
nent analysis (PCA) is applied to construct a subspace that models
the variation of the normalized shapes [11].

Fig. 1 (left) illustrates the GPA process of building shape models
for PDM or ASM: given a set of 2D views of one or several 3D rigid
or non-rigid objects under several configurations, the shape of the
object is represented by several landmarks that are consistently
labeled across view-points. Observe that if the object is rigid and
the projection is orthographic, all views can be represented using a
three-dimensional subspace [10]. Given the set of shapes (2D
projections across views, objects or non-rigid transformations of
3D objects), GPA aligns the shapes using a rigid transformation
(e.g., Euclidean or affine) to a 2D reference shape such that it
minimizes the least-squares error. Although GPA has been
extensively used, it suffers from three main limitations when
modeling non-rigid transformations of a 3D object or a class of
3D objects: (i) 2D training samples do not necessarily cover a
uniform sampling of all 3D transformations of an object, thereby
biasing the estimate of the 2D models towards some particular
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configuration; (ii) it is computationally expensive to compute a rich
set of 2D projections from all possible 3D transformations of a set of
objects; and (iii) the large variability of the object class cannot
necessarily be well registered with only one reference shape.

In order to deal with these limitations, we propose continuous
generalized Procrustes analysis (CGPA). CGPA generalizes GPA using a
continuous formulation that avoids the need to generate 2D projec-
tions from 3D configurations and uniformly covers the space of 3D
transformations. Fig. 1 (right) illustrates the main idea behind CGPA,
CGPA integrates over the space of 3D rotations avoiding the need to
compute 2D projections. The continuous approach proposed in this
paper is efficient in space and time, and is not biased to non-uniform
sampling of the input space. A requirement of CGPA is to have access
to a 3D mesh of several configurations of one or more 3D object,
which is a realistic assumption in several computer vision problems.
It is important to notice that building 2D models from 3D samples is a
problem that has been relatively unexplored in computer vision
[13,27].

A major challenge of the proposed work is to integrate 3D objects
over the special orthogonal group in 3D: S0ð3Þ. While there are many
possible parameterizations of S0ð3Þ, we have chosen Euler angles
because it is easy to determine the relation between the rotation limits
and the integration domain (unlike other parameterizations such as
quaternions). However, Euler angles suffer from well-known problems
such the lack of uniform integration over the space of rotations [12] or
the gimbal lock effect. In this paper, to address these problems we use
the Haar measure in the definition of the integral and uniformly
integrate over the space of rotations. In addition, in some cases a
simple mean in the case of GPA is not enough to model the variability
of objects across view-points, and we propose a multi-reference CGPA
by using several reference shapes. Experimental results in several
synthetic and real experiments show the benefits of CGPA over GPA. A
preliminary version of this work was presented in [13].

The rest of the document is organized as follows: Section 2
reviews previous work in GPA and functional data analysis (FDA),
Section 3 gives the mathematical background necessary for CGPA
formulation and Section 4 motivates and derives CGPA. Section 5
reports our experimental results and Section 6 presents the
conclusions and outlines future lines of research. Finally, in
Appendix A we review the GPA fitting algorithm.

2. Previous work

This section reviews previous work within the field of compu-
ter vision on Procrustes analysis and functional data analysis
(FDA).

2.1. Generalized Procrustes analysis (GPA)

Let D¼ ½ðDð2Þ
1 ÞT ;…; ðDð2Þ

m ÞT �T be a set of m shape samples that we
wish to align. Note that the super-script (2) indicates that the
shapes are 2D. Shape samples are represented as ℓ 2D landmarks
embedded in an R2�ℓ matrix Dð2Þ

i (see footnote1 for notation)

Dð2Þ
i ¼

xi1 … xiℓ
yi1 … yiℓ

 !
:

GPA optimizes over the 2D geometric transformation Ti (e.g.,
affine, Euclidean) that aligns each sample with respect to the
reference shape, by minimizing the energy of the reference-space
model (see Fig. 2 (right)) [14]

ERðM;AÞ ¼ ∑
m

i ¼ 1
JTiD

ð2Þ
i �MJ2F ; ð1Þ

where MAR2�ℓ represents the reference shape, and Ti in
T¼ ½TT

1;⋯;TT
m�T AR2n�2 corresponds to the rigid transformation

for the shape sample Dð2Þ
i . GPA can also be optimized using the

data-space model (see Fig. 2 (left)) in the following way [14]:

EDðM;AÞ ¼ ∑
m

i ¼ 1
JDð2Þ

i �AiMJ2F ; ð2Þ

where Ai is the inverse transformation of Ti and A¼ ½AT
1 ;…;AT

m�T
AR2n�2 corresponds to the rigid transformation for the reference
shape M.

Recall that the error function of the reference-space model
minimizes the difference between the reference shape and the
registered shape data; in the data-space model, the error function
compares the observed shape points with the transformed refer-
ence shape, i.e., shape points predicted by the model and based on
the notion of average shape [15]. This difference between the two
models leads to different properties. Since the reference-space
cost is a sum of squares and it is linear in the optimization
parameters, it can be optimized via alternated least square
methods. In contrast, the data-space cost is a bilinear problem
and non-convex (in general). If there are no missing data, the data-
space model can be solved using singular value decomposition
(SVD). A major advantage of the data-space model is that it is

Fig. 1. Illustration of GPA (left) and CGPA (right) to construct 2D shape models from 3D objects.

1 N and R denote the set of natural and real numbers, respectively, and Rd

denotes the set of real vectors of dimension d. We assume that m;d; l;n; p; iAN.
A bold capital letter denotes a matrix, D; a bold lower-case letter a column vector,
d. Di represents the ith block matrix of the matrix D. All non-bold letters denote
scalar variables. jjDjj2F ¼ TrðDTDÞ designates the square of the Frobenius norm of a
matrix. The set operation Ω\Γ stands for the set difference of Ω and Γ. ∇uF is the
gradient operator with respect to u of the function F.
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gauge invariant [14] (i.e., the cost does not depend on the
coordinate frame in which the reference shape and the transfor-
mations are expressed).

In the computer vision literature, the problem of PA has been
extensively explored. Procrustes analysis has been applied to
aligning shapes (e.g., [16]) and appearance (e.g, [6,17–19]).

In the last 10 years, several algorithms that align data with
respect to geometric transformations using appearance features
have become popular. Frey and Jojic [20] proposed a method for
learning a factor analysis model that is invariant to geometric
transformations. The computational cost of this method grows
polynomially with the number of possible spatial transformations
and it can be computationally intensive when working with high-
dimensional motion models. To improve upon that, De la Torre
and Black [17] proposed parameterized component analysis: a
gradient-based method that learns a PCA model invariant to affine
transformations. Baker et al. [19] showed how to learn active
appearance models (AAMs) in a way that are invariant to rigid and
non-rigid motion. De la Torre and Nguyen [6] extended parame-
terized component analysis to deal with non-linear appearance
representations (using kernels) and non-rigid transformations.
Miller et al. proposed the congealing method [18], which uses an
entropy measure to align images with respect to the distribution
of the data. Cox et al. [19] extended [18] through a least-squares
optimization. Kookinos and Yuille [21] proposed a probabilistic
framework and extended previous approaches [17–19] to deal
with articulated objects using a Markov random field (MRF) on top
of AAMs.

Previous work on PA uses 2D shapes or images, and hence
suffer from non-uniform sampling and high computational com-
plexity. If one has access to the 3D model of the object, CGPA can
provide a better 2D model of the object.

Pizarro et al. [16] have recently proposed a convex approach for
GPA based on the reference-space model. In their case, the cost
function is expressed with a quaternion parametrization which
allows conversion to a sum of squares program (SOSP). Finally,
the equivalent semi-definite program of a SOSP relaxation is
solved using a convex optimization tool and providing the global
minimum.

2.2. Functional data analysis (FDA)

Our work is related to previous work on FDA [22]. FDA [22] is a
branch of statistics that analyzes data providing formation about

functions. FDA methods are adaptations of classical multivariate
methods such as PCA [22], Linear Discriminant Analysis (LDA) or
analysis of variance (ANOVA) [23].

There have been several works in computer vision that make use
of FDA. Ormeneit et al. [24] proposed a robust automatic method for
modeling cyclic 3D human motion, such as person walking
sequence, using motion-capture data. The pose of the body is
represented as a time series of joint angles which are automatically
segmented into a sequence of motion cycles. The mean and the
functional principal components of these cycles are computed using
a new algorithm that enforces smooth transitions between the
cycles by operating in the Fourier domain. An advantage of this
method is that it automatically deals with noise and missing data.
The model is later used for Bayesian tracking of 3D human motion.
Levin and Shashua [25] applied a continuous formulation in the
case of PCA to model faces under different illuminations. Their
method integrates over the convex hull of the sample data, and
achieves unbiased estimates of the principal components of the
images.

3. Mathematical background

This section describes the mathematical background to our
work. We review basic statements from the calculus of variations
and integral calculus, as well as details regarding SO(3), and
measures defined on it.

3.1. Calculus

Let f : Rn-R be a smooth scalar function. If xnARn is a solution
of the problem

f ðxnÞ ¼ min
xARn

f ðxÞ; ð3Þ

then the following equation is satisfied:

∇x f ðxnÞ ¼ 0; ð4Þ

where ∇x is the gradient operator of the function f ðxÞ with respect
to x.

Now letΩ�Rn be an open and a bounded subset, let F : Rd-R

be a mapping, and we want to find a solution, vn : Ω-Rd, to the

Fig. 2. Left: data-space model. Right: reference-space model. Note that Ai ¼ T�1
i .
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following functional problem:Z
Ω
FðvnðxÞÞ dx¼min

v

Z
Ω
FðvðxÞÞ dx

� �
; ð5Þ

where the minimum is taken among all the functions v : Ω-Rd

belonging to
LpðΩ;RdÞ≔fv : Ω-Rd : v is measurable and

R
ΩjvðxÞjp dxo1g.

Then, it can be shown that the function vnALpðΩ;RdÞ satisfies
∇vFðvnðxÞÞ ¼ 0; 8xAΩ\Γ; ð6Þ
with

R
Γ1 dx¼ 0. i.e., Γ is a null set.

The interested reader is referred to [28,26] for a more detailed
review of the calculus of variations.

In order to manipulate multiple integrals, Fubini's Theorem
determines conditions under which it is possible to compute a
multiple integral using iterated integrals [29].

Let Ωp �Rp and Ωq �Rq be complete measure spaces. Let
f ðx; yÞALðΩp �Ωq;R

dÞ, i.e.Z
Ωp�Ωq

jf ðx; yÞjdðx; yÞo1; ð7Þ

with f ðx; yÞ measurable, thenZ
Ωp�Ωq

f ðx; yÞ dðx; yÞ ¼
Z
Ωp

Z
Ωq

f ðx; yÞ dy
 !

dx¼
Z
Ωq

Z
Ωp

f ðx; yÞ dx
 !

dy:

The integral with respect to a product of two measures can be
calculated as iterated integrals with respect to those two measures.

3.2. Integration over the SO(3) group

SO(3) forms a group whose action is the composition of all
rotations. Each rotation is a linear transformation that preserves
the length and spatial orientation of vectors.

Next, we will show why Euler angle parametrization of 3D
rotations can be adopted in the CGPA formulation when defining
a proper Haar measure, while it is unclear how to do it for
quaternions.

3.2.1. SO(3) parameterizations
There are several parameterizations for 3D rotations around the

origin, but the most common ones are Euler angles and quater-
nions. Euler angles encode orientations in the 3D Euclidean space
R3 through the composition of three rotations ðα;β; γÞ, each one
around a single axis of a basis. The final rotation is obtained by
multiplying three rotation matrices, R¼ RzðγÞRyðβÞRxðαÞ where

RxðαÞ ¼
1 0 0
0 cos ðαÞ � sin ðαÞ
0 sin ðαÞ cos ðαÞ

0
B@

1
CA;

RyðβÞ ¼
cos ðβÞ 0 sin ðβÞ

0 1 0
� sin ðβÞ 0 cos ðβÞ

0
B@

1
CA;

RzðγÞ ¼
cos ðγÞ � sin ðγÞ 0
sin ðγÞ cos ðγÞ 0
0 0 1

0
B@

1
CA:

Euler angles are frequently used to define three dimensional
rotations, nevertheless, they lead to a non-uniform distribution of
rotations (see Fig. 3 (left), image better seen in color) when the
three angles are uniformly sampled among their typical domains
[12]. Fig. 3 (left) represents 10,000 samples of 3D angles that have
been sampled uniformly in the Euler space. That is, for each of the
roll, yaw and pitch angles, we have randomly selected 10,000
values between α; γ ¼ Uð�π;π� and β¼ ½�π=2;π=2�, respectively.
U means that angles can take values uniformly distributed on the
given interval. Each of these three angles are represented by a
point in a sphere (two angles) and there is a line in the tangent
space that conveys information of the other angle. We can observe
in this figure how the higher density of points is located in the
poles, and hence we did not achieve a uniform distribution over
the surface.

Beyond the non-uniform sampling the Euler angles also suffer
from the Gimbal Lock problem [31]. Gimbal Lock occurs on
rotations in a 3D space, when two of the three axes are parallel.
One degree of freedom is lost and, therefore, only rotations in 2D
space can be performed. A simple example to help to understand
this issue arises when using the convention Z–Y–Z, i.e., first, a
rotation on the Z-axis by the angle α, followed by a turn on the
rotated Y-axis by the angle β and, finally, a rotation by the angle γ
on the new Z-axis. If β¼ 0, it produces a rotation by the angle
δ1 ¼ α þ γ, only on the Z-axis. In this case, the system loses a
degree of freedom and it is “locked” rotating in a degenerate
2D space.

Quaternions are generally used as a standard solution to these
issues. Quaternions were conceived by Hamilton [33] by extending
complex numbers q¼ ½a; bi; cj; dk�. Each unit quaternion ðJqJ ¼ 1Þ
can be interpreted as a 4D point in the unit 3-sphere S3, which also
represents a rotation in the 3D space. For any unit quaternion,
q¼ ½ cos ðθ=2Þ; sin ðθ=2Þû�, and for any vector vAR3, the action of
the triple product

vR ¼ qvqn ¼ Rqv where

Rq ¼
1�2ðc2 þ d2Þ 2ðbc�adÞ 2ðbdþ acÞ
2ðbcþ adÞ 1�2ðb2 þ d2Þ 2ðcd�abÞ
2ðbd�acÞ 2ðcdþ abÞ 1�2ðb2 þ c2Þ

0
BB@

1
CCA;

Fig. 3. Non-uniform (left) and uniform (right) distributions of rotations in SOð3Þ. Rotation samples are represented by means of 10,000 rotated arrows onto the unit sphere
surface.
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may be geometrically interpreted as a rotation of the vector v
through an angle θ, with û being the axis of rotation.

Fig. 3 (right) illustrates the uniform distribution achieved with
a quaternion representation using the method proposed by [32],
where the four quaternion parameters q¼ ½ cos ðθ2Þr2; sin ðθ1Þr1;
cos ðθ1Þr1; sin ðθ2Þr2� are calculated through the use of three
random variables XiAUð0;1Þ; i¼ 1;…;3, where θ1 ¼ 2πX2,
θ2 ¼ 2πX3, r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�X1

p
and r2 ¼

ffiffiffiffiffiffi
X1

p
. Observe that in this case

the distribution of angles is more homogeneous over the surface.
The points are no longer concentrated on the poles, neither other
regions of the sphere. Although the method presented in [32]
achieves uniformly distributed random rotations, the relation
between its three parameters and the rotation angles is not trivial.
This fact makes the parametrization of CGPA using quaternions
unfeasible, since a CGPA parametrization depending on the rota-
tion angles is required, in order to bound the integration domains.
Therefore, we have chosen Euler angles with Haar measure [34],
which is detailed in the next section.

3.2.2. Haar measure
Integration of functions on a particular space involves the

definition of a specific measure on that space [29].
The Haar measure is defined such that it assigns an “invariant

volume” to subsets of locally compact topological groups and
subsequently defines an integral for functions on those groups
[34]. We may associate to any Haar measure μ on a group a
bounded linear functionals FALðRp;RÞ

Fðf Þ ¼
Z
G
f ðωÞ dμðωÞ:

As an example, the Haar measure on the group of rotations
SO(3) [34, Section 7 of Chapter 1] leads toZ
SOð3Þ

f ðωÞ dμðωÞ ¼
Z π

0
dγ
Z 2π

0
dβ
Z 2π

0
dα

1
8π2 sin ðβÞf ðωðα;β; γÞÞ:

ð8Þ
Using the Haar measure, we obtain an invariant integral for

functions on the rotation group. Thus, the problem of discrete non-
uniform distribution using Euler angles discussed above is avoided
in the definition of the integral.

4. Continuous generalized Procrustes analysis

In this section, we formulate the proposed continuous general-
ized Procrustes analysis (CGPA). CGPA extends GPA by adopting a
continuous formulation that incorporates the information of all
rigid 3D transformations.

4.1. Energy functional for continuous generalized Procrustes analysis

We formulate the problem of CGPA as an energy functional
minimization, involving 3D landmarks of objects and continuous
3D rotations. The formulation uses the reference shape as the
shape model in the data-space cost function (Fig. 2 (left)). Data-
space is chosen because it is gauge invariant and its derivation is
simpler than using reference-space. Our main assumption is that
the best reference shape is the one that can approximate all
possible 3D shape configurations of a given set of shapes.
We interpret this in the following way: we consider a set of 3D
shapes, we perform a predefined set of rotations, and we project
them onto the 2D space. Then, we estimate the reference shape by
aligning it with each shape configuration using an estimated affine
transformation. Given the previous issues, we derive the energy
functional to be minimized.

Let Dð3Þ
i AR3�ℓ be a 3D shape described by ℓ landmark points

Dð3Þ
i ¼

xi1 … xiℓ
yi1 … yiℓ
zi1 … ziℓ

0
B@

1
CA:

D¼ ½ðDð3Þ
1 ÞT ;…; ðDð3Þ

n ÞT �T is the set of samples, where n is the
number of training examples, and Ω¼ fω¼ ðα;β; γÞAR3g is the
set of 3D rotation domains, where ω are the Euler angles. We
assume the 3D data has been centered. CGPA minimizes the
following energy functional:

ECGPAðM;A1ðωÞ;…;AnðωÞÞ ¼ ∑
n

i ¼ 1

Z
Ω
FðM;AiðωÞÞ dω

¼ ∑
n

i ¼ 1

Z
Ω
JPRðωÞDð3Þ

i �AiðωÞMJ2F dω;

ð9Þ

where MAR2�ℓ is the mean reference shape and each matrix
AiðωÞ in AðωÞ ¼ ½A1ðωÞT ;…;AnðωÞT �T AR2n�2, is a linear transfor-
mation of the landmark coordinates. The matrix RðωÞAR3�3

corresponds to the 3D rotation matrix that depends on the Euler
angle ω (as defined in Section 3.2.1), and PAR2�3 is the matrix
describing the orthographic projection onto the plane Z¼0,
defined as

P¼ 1 0 0
0 1 0

� �
: ð10Þ

Note that for Euler anglesω¼ ðα;β; γÞ, the Haar measure can be
computed for every domainΩ. For instance, for a complete sphere
this measure corresponds to dω¼ ð1=8π2Þ sin ðβÞ dα dβ dγ.

The main differences between the functional in Eq. (9) and the
energy function in Eq. (2) are: (i) in the former, the affine
transformations AiðωÞ are functions that depend on the Euler
angles ω, whereas in Eq. (2), Ai are variables; (ii) the 2D shape
projection depends directly on the 3D structure of the object Dð3Þ

i
and the 3D transformation parameters; and (iii) it is a continuous
formulation, and discrete sums are extended by integrals. Note
that nrm, since n, given in Eq. (9), denotes the number of 3D
objects and m, given in Eq. (2), denotes the number of 2D
projections of those objects after different rigid 3D transforma-
tions. That is, n times the number of rotations.

4.2. Optimization for CGPA

In order to minimize the CGPA functional (Eq. (9)):

min
M;A1 ;…;An

ECGPAðM;A1;…;AnÞ; ð11Þ

we propose an algorithm based on the closed-form solution of two
optimization subproblems.

Note that, for simplicity, we omit the variable ω when it is
understood, we use A to denote ½AT

1;…;AT
m�T , and we omit the

superscript 3 from Dð3Þ
i .

Unlike standard GPA, in the present formulation, Ai : Ω-R3�3

are functions and not parameters. Moreover, it is worth noticing
that the dependence of ECGPA on the functions Ai is non-linear. This
makes the minimization of ECGPA, Eq. (11), a non-linear variational
problem. Although the existence of a solution ðMn;An

1;…;An

nÞ to the
problem in Eq. (11) is guaranteed from a theoretical point of view,
it is not easy to find its explicit expression (see Section 3.1). For
this reason, we propose the following minimization algorithm to
find a stationary point. First, we set an initial value M¼M0 and we
optimize over the functions A1;…;An, obtaining a close solution
for ½An

1;…;An

n�. In the next step, we minimize over M the functional
M-ECGPAðM;An

1;…;An

nÞ. This two step algorithm is detailed below.
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Step 1: Optimizing ECPA over the functions Ai, i.e.

min
Ai

ECGPAðM;AÞ;

can be solved using the following equation: ∇Ai
FðM;AiÞ ¼ 0, where

∇Ai
is the gradient operator with respect to the unknown para-

meters of the matrix Ai.
First, let us rewrite FðM;AiÞ with the following equivalent

expression:

FðM;AiÞ ¼ TrððPRDiÞT ðPRDiÞÞ þ TrððAiMÞT ðAiMÞÞ�2 TrððPRDiÞTAiMÞ
Then

∇Ai
FðM;AiÞ ¼ AMMT þ AMMT�2ðPRDiÞMT

¼ 2AMMT�2ðPRDiÞMT ¼ 0

Finally, the solution of these equations is

An

i ðωÞ ¼ PRðωÞDiM
T ðMMT Þ�1:

Step 2: To optimize ECGPA over M, i.e., minMECGPAðM;AÞ; the
necessary conditions are: ∇MECGPAðM;AÞ ¼ 0.

Given that M and Di do not depend on the rotation, the
functional can be rewritten involving three definite integrals,
IiAR3�3; JiAR2�2 and KiAR3�2 as follows:

ECGPAðM;AÞ ¼ ∑
n

i ¼ 1
Tr DT

i

Z
Ω
ðPÞT ðPRÞ dω

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ii

Di

2
6664

þMT
Z
Ω
AT
i Ai dω

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Ji

M�2DT
i

Z
Ω
ðPRÞTAi dω

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ki

M

3
7775:

And, we write

∇MECGPAðM;AÞ ¼ ∂
∂M

∑
n

i ¼ 1
Tr½DT

i IiDi þMT JiM�2DT
i KiM�

 !
:

The first term of the functional does not depend on ω,
therefore

∇MECGPAðM;AÞ ¼ ∂
∂M

∑
n

i ¼ 1
Tr½MT JiM�

 !
�2

∂
∂M

∑
n

i ¼ 1
Tr½DT

i KiM�
 !

¼ ∂
∂M

Tr MT ∑
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i ¼ 1
Ji

 !
M

" # !
�2

∂
∂M

Tr DT
i ∑
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i ¼ 1
Ki

 !
M

" # !

¼ ∑
n

i ¼ 1
Ji

 !
Mþ ∑

n

i ¼ 1
Ji

 !T

M�2 ∑
n

i ¼ 1
Ki

 !T

Di

¼ 2 ∑
n

i ¼ 1
Ji

 !
M�2 ∑

n

i ¼ 1
Ki

 !T

Di ¼ 0:

Finally, the solution for M can be expressed as follows:

M¼ ∑
n

i ¼ 1
Ji

 !�1

∑
n

i ¼ 1
ðKiÞTDi

 !
:

It depends on the integrals Ji and Ki. We can rewrite
the integral form using the solution of the previous step as
follows:

Ji ¼
Z
Ω
AT
i Ai dω¼

Z
Ω
ðPRDiM

TLÞT ðPRDiM
TLÞ dω

¼ LTMDT
i

Z
Ω
ðPRÞTPR dω

� �
DiM

TL

¼ LTMDT
i

Z
Ω
X dω

� �
DiM

TL;

where L¼ ðMMT Þ�1 and X¼ ðPRÞTPR.
Equivalently

Ki ¼
Z
Ω
ðPRÞTAi dω¼

Z
Ω
X dω

� �
DiM

TL;

In order to compute the value of these integrals we only need to
solve the definite integral for X. For instance, considering,
Ω¼ fðα;β; γÞAR3; jαjrπ=2; jβjrπ=2; jγjrπ=2g, we obtain

Z
Ω
X dω¼

π2

8 þ π3

16 0 0

0 π
8 þ 3π3

32 0

0 �π
8 þ π2

8 þ 3π3

32

0
BB@

1
CCA:

The special orthogonal group of rotations in 3D space SOð3Þ is
smooth except for a polar coordinate singularity along an angle of zero
[35]. In order to avoid Euler singularities, we use Fubini's theorem. We
divide the domains containing zero into disconnected intervals, and
we compute the joint integral as iterated integrals. For instance, in
order to compute the integral in the domain defined above, i.e.Z
Ω
X dω¼

Z π=2

�π=2

Z π=2

�π=2

Z π=2

�π=2
X dω;

we compute the integrals

Z1 ¼
Z 0

�π=2
X dϕþ

Z π=2

0
X dϕ

Z2 ¼
Z 0

�π=2
h sin ðβÞZ1 dβ þ

Z π=2

0
h sin ðβÞZ1 dβ;

where h is the Haar measure for the Euler angle interval. And finallyZ
Ω
X dω¼

Z 0

�π=2
Z2 dψ þ

Z π=2

0
Z2 dψ

Step 3: In the last step, convergence is measured by the
condition JMj�Mj�1 JFoϵCGPA, where j indicates the jth iteration,
and ϵCGPA is a threshold. If convergence is not achieved, a
maximum number of iterations is considered.

5. Experimentation

This section describes the experimental validation that
compares the performance of CGPA to standard discrete PA
methods.

5.1. Data

We used the following databases in our experiments.

� Stanford 3D scanning repository: the data consist of dense 3D
meshes of real objects captured with 3D scanners. We
considered the “Stanford Bunny” model from the Stanford
3D Scanning Repository.2 Fig. 4 (left) shows the original 3D
shape model. The object contains 453 landmark points; how-
ever, for visualization purposes only frontal landmark points
are displayed in the graphical results with a triangulated
mesh.

� Athena and Venus models: we considered two 3D models:
Athena and Venus.3 The shape of these models is more

2 http://graphics.stanford.edu/data/3Dscanrep/
3 http://graphics.im.ntu.edu.tw/robin/courses/gm05/model/
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complex than those in the previous databases. Fig. 7 shows the
3D models. The number of landmark points for Athena and
Venus is 560 and 819, respectively. The landmarks are con-
nected with lines for better visualization.

� Multi-PIE database: we used the 3D face models built firm
images from the Multi-PIE database [36] using structure from
motion [37]. Three-dimensional faces of 30 subjects each
adopting three different expressions were considered: neutral,
smile and scream. Fig. 5 represents five 3D faces (top row)
belonging to the data set and their 2D projections (bottom
row). The number of landmark points is 66. The landmarks are
connected with lines for better visualization.

� MoCap database: the CMU Graphics Lab Motion Capture data-
base [38] contains sequences of several subjects performing
different activities captured with a Vicon Motion Capture sys-
tem. We considered one of the motion sequences: a person
walking sequence (#0201). This sequence was acquired at a rate
of 30 frames per second. Fig. 6 displays samples of the 3D person
walking sequence. The number of landmark points is 343. The
landmarks are connected with lines for better visualization.

5.2. Methods and parameters

We compared CGPA with the discrete approach, GPA. To learn
the 2D reference shape model, CGPA uses 3D data for training, and

GPA uses 2D projections of the 3D training set. Hence, the training
set for CGPA has size n� 3� l, where n is the number of 3D
samples (see Eq. (9)) and l the number of landmark points; whereas
GPA uses a training set of size m� 2� l, where m is the number of
the 2D samples (projections from a 3D model) considered, see Eq. (2).
Both continuous and discrete models are used to approximate new
2D projections of 3D shapes under different configurations (e.g., view
points, non-rigid configurations). The performance of the two meth-
ods is evaluated qualitatively and quantitatively by measuring the
reconstruction error of unseen 2D test samples. Specifically, we
computed the mean squared error between the unseen shape and
the reconstructed shape, after model fitting.

For GPA we used the standard algorithm [11], and we have
described it in Appendix A for completeness. To fit the CGPA, we used
the optimization algorithm presented in Section 4.2. The tolerance
parameter, AGPA, for computing the reference shape using the GPA
iterative algorithm was set to the machine precision. The conver-
gence threshold, ACGPA, for computing the model in the optimization
algorithm, was also set to the machine precision.

We performed three sets of experiments to validate CGPA:

� Qualitative experiment with Stanford Bunny Model (Section 5.3):
the first experiment dealt with learning the continuous 2D
reference shape of a 3D object under 3D rotations. The
objective of this experiment was to illustrate the ability of
CGPA to obtain an unbiased mean model when the 3D rotation

Fig. 4. The bunny 3D shape (left), and reference shapes computed in the qualitative experiment using GPA (middle) and CGPA (right).

Fig. 5. Face samples of the training set: 3D faces (first row) and their projections in 2D space (second row).

Fig. 6. Samples of the person walking sequence in 3D.
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domain is known. Recall that in the continuous formulation the
integration domain simulates all the possible vantage points
from which a 3D object can be projected (Eq. (9)).

� Reference shape model experiment on 3D faces (Section 5.4): in
this experiment, we compared the performance of CGPA and
GPA 2D reference shape estimation to approximate a set of 3D
faces from the Multi-PIE database [37]. The training set for GPA
was obtained by projecting the 3D faces under different view-
points by sampling Ω (angle domain). In the case of CGPA, we
integrated continuously overΩ. The test set of 90 images was gen-
erated by un-sampled angles during the training in theΩ domain.

� Subspace model experiment (Sections 5.5– 5.7): in this experi-
ment, we used several CGPA reference shapes to approximate
the rigid 3D deformations of a set of objects. We compared the
reconstruction capability of the multi-reference CGPA with GPA
followed by PCA on the aligned shapes [11] (GPA+PCA). The
multi-reference CGPA maintains the advantages of the contin-
uous approach.

5.3. Qualitative experiment with Stanford Bunny model

The first experiment was qualitative and just for illustrating
how CGPA can estimate the reference shape model in a particular

domain. We used the Stanford Bunny from the Stanford 3D
Scanning Repository. The continuous method was trained with
the single 3D object in the domain: Ω¼ fðα;β; γÞAR3=jαj ¼ 0;0r
βrπ=2; jγj ¼ 0g. To make more evident the effect achieved by
the CGPA approach, we consider the most degenerated case for the
sampling in the discrete training for GPA and we limited the
discrete training to one single sample of the rotation angles.
In particular, the discrete training set consisted of the sample
build by the rotation Ω¼ fðα;β; γÞ ¼ ð0;0;0Þ, i.e. the projection of
the 3D Bunny on the Z-plane without performing any 3D rotation.

Fig. 4 shows the reference shape models computed using GPA
and CGPA. Observe that the model obtained by CGPA is not fixed in
the direction corresponding to the frontal viewpoint. We can
visually compare the reference model with the frontal projection
obtained using the GPA reference model. CGPA can be used to
compute a reference shape oriented as desired.

5.4. Reference shape model experiment on 3D faces

In this experiment, we used the Multi-PIE database reference. We
considered 30 3D faces randomly chosen from the subjects available
adopting three different expressions: neutral, smile and scream.

The 2D reference shape for this set of 3D faces was learned
under the 3D rotation domain Ω. Specifically, we set the rotation
domain to: Ω¼ fðα;β; γÞAR3=jαjrπ=4; jβjrπ=4; jγj ¼ 0g. See
Fig. 9 (left) for an illustration of this domain. We avoided Z-axis
rotations to simplify the visualization of the samples. To build the
discrete reference shape model, we applied GPA under several
viewpoint projections of the 3D shapes, sampling the whole rotation
domainΩ. For the training set of the CGPA approach, we used the set
of 3D faces. We compared the reconstruction capability of the CGPA
and GPA reference shapes.

We built the test set using an unseen set of faces rotated
through 90 angles randomly selected in the domain Ω and
projected onto the 2D plane. All the faces were rotated through
the same set of angles inΩ. We computed the reconstruction error
as the mean squared error between the unseen shape and the
reconstructed shape (after fitting). In this case, to provide a
relative error measure, the error measures are given with respect
to the mean eye distance of the test set.

Fig. 8 shows the performance of GPA versus CGPA. The dashed
line represents the mean reconstruction error for GPA as a function
of the number of training viewpoint projections. The solid line

Fig. 7. Samples of the Athena and Venus 3D models.
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Fig. 8. Reference shape model results for faces. Shown are the reconstruction error
for GPA (dashed line) as a function of the number of viewpoint projections in the
training set; and reconstruction error for the CGPA reference (solid line) using 3D
shapes as training set.
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corresponds to the reconstruction error for CGPA. The training was
repeated 30 times, and the standard deviation for each experiment is
marked by the horizontal lines. Note that the mean reconstruction
error for GPA decreases when the size of the training set increases.
Given a large enough number of projections, GPA converges to CGPA,
which provides a low error and negligible variance throughout the
whole experiment. In this experiment, with 30 faces, GPA
required around 80 rotations for each sample face to achieve
similar results to CGPA. Thus, GPA needs 80 times more storage
space than CGPA and the computational cost of GPA increases
by 80 � 30 operations.

5.5. Subspace model experiment on 3D faces

In this experiment, we have a similar set up to the previous
experiments. We also considered 30 3D faces chosen randomly
from the available subjects under three different expressions:
neutral, smile and scream.

We set the rotation domain to: Ω¼ fðα;β; γÞAR3=jαj
rπ=4; jβjr π=4; jγj ¼ 0g. We also avoided Z-axis rotations to
simplify the visualization. To learn the discrete subspace model,
we first randomly sampled the whole rotation domain, Ω, to build
the training set of several viewpoint projections of the 3D shapes.
We applied GPA to extract the discrete reference shape based on
this training set. Then, we removed the mean of the training set
using the reference shape. Finally, we performed PCA and we chose
the first eight eigenvectors as the basis elements of the subspace.
For the continuous model, we estimated nine reference shapes
using CGPA. The nine different models were trained with the same
3D shapes, only changing the domain subintervals

Ω1 ¼ fðα;β; γÞAR3=�π=4rαr0;β¼ 0; γ ¼ 0g;
Ω2 ¼ fðα;β; γÞAR3=0rαrπ=4;β¼ 0; γ ¼ 0g;
Ω3 ¼ fðα;β; γÞAR3=α¼ 0;�π=4rβr0; γ ¼ 0g;
Ω4 ¼ fðα;β; γÞAR3=α¼ 0;0rβrπ=4; γ ¼ 0g;
Ω5 ¼ fðα;β; γÞAR3=�π=4rαr0;�π=4rβr0; γ ¼ 0g;
Ω6 ¼ fðα;β; γÞAR3=�π=4rαr0;0rβrπ=4; γ ¼ 0g;
Ω7 ¼ fðα;β; γÞAR3=0rαrπ=4;�π=4rβr0; γ ¼ 0g;
Ω8 ¼ fðα;β; γÞAR3=0rαrπ=4;0rβrπ=4; γ ¼ 0g;
Ω9 ¼ fðα;β; γÞAR3=jαjrπ=4; jβjrπ=4; γ ¼ 0g:

These subintervals were chosen to cover the transformations
corresponding to different viewpoint projections of the object.
In Fig. 9 (right), we show the nine CGPA reference shapes computed
for the nine subintervals.

We built the test set with unseen shapes randomly rotated
through 90 angles in Ω. All the faces were rotated through the
same set of angles in Ω. We computed the reconstruction error as
the mean squared error between the test shape and the recon-
structed shape (after fitting). The error measures are given with
respect to the mean eye distance of the test set. Fig. 10 (left) shows
the performance of the reference shapes obtained with CGPA
versus GPA+PCA. The dashed line represents the mean reconstruc-
tion error for GPA+PCA as a function of the number of viewpoint
projections in the discrete training set. The solid line shows the
reconstruction error for CGPA. The training was repeated 30 times
and the standard deviation for each experiment is marked by the
horizontal lines. Note that the mean reconstruction error for GPA
decreases when the size of the training set increases. In this
experiment, CGPA produces competitive results compared to the
method GPA+PCA. Therefore, if discrete sampling is to be avoided,
CGPA represents an alternative to the standard GPA+PCA method.
Qualitative results in Fig. 10 (right) show how CGPA and GPA+PCA
perform with the Multi-PIE database.

We could have used GPA to build nine discrete reference shapes
and compare this discrete subspace model with the continuous
subspace model; however, this option was ruled out, since the
previous experiment was focused on this comparison.

5.6. Subspace model experiment with MoCap

In this experiment, we used the MoCap database. We consid-
ered 3D skeletons from 30 frames of the person walking sequence.
We rotated them in the following rotation domain: Ω¼ fðα;β; γÞ
AR3=jαjrπ=4; jβjrπ=4; jγj ¼ 0g. As before, we avoided Z-axis
rotations to simplify the visualization. To build the discrete sub-
space model, we first randomly sampled the whole rotation
domainΩ to build the training set of several viewpoint projections
of the 3D shapes. We applied GPA to extract the discrete reference
shape from this training set. After aligning to the reference shape,
we performed PCA and we chose the first eight eigenvectors as the
basis elements of the subspace. For the continuous model, we
estimated nine reference shapes using CGPA for the same nine

Fig. 9. Left: illustration of the rotation domain Ω. Right: the nine reference shapes computed by CGPA in the subspace model experiment with faces.
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subintervals as in the previous experiment. Fig. 11 shows the nine
CGPA reference shapes obtained.

We built the test set with unseen shapes randomly rotated
through 90 angles in Ω. All the skeletons considered were rotated
through the same set of selected angles in Ω. We computed the
reconstruction error as the mean squared error between the test
shape and the reconstructed shape (after fitting).

Fig. 12 (left) shows the performance of GPA+PCA versus the
reference shapes obtained with CGPA. The dashed line represents
the mean reconstruction error for GPC+PCA as a function of the
number of training viewpoints. All the 3D skeletons considered
were rotated to the same number of viewpoints in the Ω domain.
The solid line shows the reconstruction error for CGPA. Training
was repeated 30 times and the standard deviation for each
experiment is indicated by the horizontal lines. As in the previous
experiment, the mean reconstruction error for GPA decreases
when the size of the 2D training set increases. In this experiment
too CGPA produces competitive results compared to the standard
GPA+PCA method, and discrete sampling is avoided. The qualita-
tive results in Fig. 12 (right) show the performance of CGPA and
GPA+PCA in the person walking sequence from the MoCap
database.

5.7. Subspace model experiment with Athena and Venus

In this experiment, we used the Athena and Venus models. We
rotated them in the following rotation domain: Ω¼ fðα;β; γÞAR3=

jαjrπ=4; jβjrπ=4; jγj ¼ 0g. As before, we avoided Z-axis rotations
to simplify visualization. To build the discrete subspace model, we
first randomly sampled the whole rotation domain Ω to build the
training set of several viewpoint projections of the 3D shapes.
We applied GPA to extract the discrete reference shape from this
training set. Then, we performed PCA and we chose the first eight
eigenvectors as the basis elements of the subspace. For the
continuous model, we estimated nine reference shapes using
CGPA for the same nine subintervals as in the previous experi-
ment. In Figs. 13 and 14, we show the nine CGPA reference shapes
for the Athena and Venus model, respectively.

We built the test set with unseen shapes randomly rotated
through 90 angles in Ω. We computed the reconstruction error as
the mean squared error between the test shape and the recon-
structed shape (after fitting).

Figs. 15 and 16 show the performance of GPA+PCA versus the
reference shapes obtained with CGPA for the Athena and
Venus models, respectively. The dashed line represents the mean
reconstruction error for GPC+PCA as a function of the number
of training viewpoints and the solid line indicates the reconstruc-
tion error for CGPA. Training was repeated 30 times and the
standard deviation for each experiment is indicated by the
horizontal lines. The mean reconstruction error is normalized by
an estimation of the mean value of the intrapoint size of these
shape models. As in the previous experiments, the mean recon-
struction error for GPA decreases when the size of the 2D
training set increases. In this experiment too CGPA produces
competitive results compared to the standard GPA+PCA method,
and discrete sampling is avoided. Qualitative results in the right-
hand images of Figs. 15 and 16 show the performance of CGPA and
GPA+PCA via three test Athena and Venus shapes. Surface colors
represent the mean squared error; brighter colors represent
greater errors.

6. Conclusions

In this work, we have proposed continuous generalized Pro-
crustes analysis, a continuous alternative to GPA, as a method for
learning 2D shape models from 3D objects. CGPA has three main
advantages over GPA: (i) it does not need to generate 2D samples,
(ii) unbiased 2D models are constructed, and (iii) the memory
requirements for CGPA are only those of the storage of the 3D
objects and the reference shape(s). Moreover, we have reviewed
the problems of the uniform sampling of 3D transformations of an
object by different parameterizations: Euler angles and quater-
nions. Finally, we have tested the construction of the CGPA
reference shape model experimentally and compared it to
GPA for 2D training sets of different sizes. We have also
observed that the GPA reference model converges to the CGPA
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Fig. 10. Subspace model results for faces. Left: reconstruction error for GPA+PCA (dashed line) as a function of the number of viewpoint projections in the training set; and
reconstruction error for CGPA reference shapes (solid line) using 3D shapes as the training set. Right: qualitative results of the subspace model experiment with faces.
Reconstruction performance using GPA+PCA (top row) and CGPA reference shapes (bottom row).

Fig. 11. The nine reference shapes computed by CGPA in the subspace model experiment with motion capture.
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reference model when using a sufficient number of training
samples. Moreover, the experiments have shown that the
continuous model using several CGPA reference shapes can be
an alternative to the classical discrete subspace approach to
avoid discrete sampling.

As a future line of research, we plan to incorporate a
subspace into the energy functional and to study different
optimization methods using optimal discretization of the func-
tional. Moreover, in the case of AAM where only 2D samples are
available, the CGPA formulation may incorporate a structure
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Fig. 12. Subspace model results for MoCap. Left: reconstruction error for GPA+PCA (dashed line) as a function of the number of viewpoint projections in the training set; and
reconstruction error for CGPA reference shapes (solid line) using 3D shapes as the training set. Right: qualitative results of the subspace model experiment with MoCap
skeletons. Reconstruction performance using GPA+PCA reference shapes (top row) and CGPA (bottom row). Test shape (solid line) and reconstruction shape (dashed line).

Fig. 13. The nine reference shapes computed by CGPA in the subspace model experiment with Athena.

Fig. 14. The nine reference shapes computed by CGPA in the subspace model experiment with Venus.
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from the motion step to infer and impose consistency on the 3D
structure of shapes.
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Appendix A. GPA fitting

Given a target shape Dð2Þ
i we vectorize it as: di ¼ ðxi1; yi1;…;

xiℓ; yiℓÞ. Then we use the subsequent iterative approach to solve the
following reference-space error: EGPAðT ; cÞ ¼∑n

i ¼ 1 Jdi�Tðmþ BcÞJ22,
where m is the vectorized version of the reference shape M, B is the
basis built using PCA, and T is a similarity transformation.

1. Initialize coefficients c (shape parameters) to zero.
2. Generate the model instance: x¼mþ Bc.
3. Find the pose parameters T which best map x to di using PA.
4. Invert the transformation T and use it to project di into the

model co-ordinate frame: d′
i ¼ T�1di

5. Normalize the shape.
6. Update the model parameters to match d′

i: c¼ BT ðd′
i�mÞ.

7. Apply constraints on c.
8. If the error does not converge (i.e., use the reconstructed shape

x′¼mþ Bc, E¼ Jx�x′J22o ϵGPA), return to step 2.
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Fig. 16. Subspace model results with Venus model. Left: reconstruction error for GPA+PCA (dashed line) as a function of the number of viewpoint projections in the training
set; and reconstruction error for CGPA reference shapes (solid line) using 3D shapes as the training set. Right: qualitative results of the subspace model experiment with
Venus. Reconstruction performance using GPA+PCA reference shapes (top row) and CGPA (bottom row). Mean squared error over the test shape surface. Brighter colors
represent greater errors. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

L. Igual et al. / Pattern Recognition 47 (2014) 659–671670

http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref1
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref2
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref2
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref3
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref3
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref4
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref4
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0005
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0010
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0010
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0010
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref7
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref7
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref8
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref8
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref9
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref9
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref9
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref10
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref10
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref10
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0015
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0015
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0020
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0020
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0025
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0025
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0025
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0030
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0030


[15] A.J. Yezzi, S. Soatto, Deformation: deforming motion shape average and the
joint registration and approximation of structures in images, International
Journal of Computer Vision 53 (2) (2003) 153–167.

[16] D. Pizarro, A. Bartoli, Global optimization for optimal generalized procrustes
analysis, in: CVPR, 2011.

[17] F. De la Torre, M.J. Black, Robust parameterized component analysis: theory
and applications to 2d facial appearance models, Computer Vision and Image
Understanding 91 (1) (2003) 53–71.

[18] E.G. Learned-Miller, Data driven image models through continuous joint
alignment, Transactions on Pattern Analysis and Machine Intelligence 28 (2)
(2006) 236–250.

[19] S. Baker, I. Matthews, J. Schneider, Automatic construction of active appear-
ance models as an image coding problem, Transactions on Pattern Analysis
and Machine Intelligence 26 (10) (2004) 1380–1384.

[20] B.J. Frey, N. Jojic, Transformation-invariant clustering using the EM algorithm,
Transactions on Pattern Analysis and Machine Intelligence 25 (1) (2003) 1–17.

[21] I. Kookinos, A. Yuille, Unsupervised learning of object deformation models, in:
ICCV, 2007.

[22] J.O. Ramsay, B.W. Silverman, Functional Data Analysis, Springer-Verlag, 1997.
[23] D. Freedman, Statistical Models: Theory and Practice, Cambridge University

Press, 2005.
[24] D. Ormoneit, M.J. Black, T. Hastie, H. Kjellström, Representing cyclic human

motion using functional analysis, Image Vision Computing 23 (14) (2005)
1264–1276.

[25] A. Levin, A. Shashua, Principal component analysis over continuous subspaces
and intersection of half-spaces, in: ECCV, 2002.

[26] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag,
1989.

[27] A. Franco, D. Maio, D. Maltoni, 2D face recognition based on supervised
subspace learning from 3D models, Pattern Recognition 41 (12) (2008)
3822–3833.

[28] I. Fonseca, G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces,
Springer-Verlag, 2007.

[29] M. Spivak, Calculus, Cambridge University Press, 2006.
[31] E.Y. Chao, Justification of triaxial goniometer for the measurement of joint

rotation, Journal of Biomechanics 13 (12) (1980) 989–1006.
[32] K. Shoemake, Uniform random rotations, in: D. Kirk (Ed.), Graphics Gems III,

Academic Press Professional, 1992, pp. 124–132.
[33] S. Hamilton, Lectures on Quaternions, Hodges and Smith, 1853.
[34] M.A. Naimark, Linear Representation of the Lorentz Group, Macmillan, 1964.
[35] K. Shoemake, Animating rotation with quaternion curves, in: SIGGRAPH, 1985.
[36] R. Gross, I. Matthews, J.F. Cohn, T. Kanade, S. Baker, Multi-PIE, Image and

Vision Computing 28 (5) (2010) 807–813.
[37] J. Gonzalez-Mora, F. De la Torre, N. Guil, E.L. Zapata, Learning a generic 3d face

model from 2d image databases using incremental structure from motion,
Image and Vision Computing 28 (7) (2010) 1117–1129.

[38] Carnegie Mellon Motion Capture Database 〈http://mocap.cs.cmu.edu〉.

Laura Igual received the degree in Mathematics from the University of Valencia in 2000. She obtained her Ph.D. Thesis in 2006 from the University Pompeu Fabra and since
then she is a research member at the Computer Vision Center of Barcelona. Since 2009, she is a lecturer at University de Barcelona.

Xavier Perez-Sala received the B.Sc. degree in Industrial Electronics (2008) and the M.Sc. degree in Artificial Intelligence (2010) from the Technical University of Catalonia.
He is currently pursuing a Ph.D. degree in Artificial Intelligence at the same university and the Fundació Privada Sant Antoni Abat. Since 2012 he is member of the Computer
Vision Center of Barcelona.

Sergio Escalera received the B.S. and M.S. degrees from the Universitat Autònoma de Barcelona in 2003 and 2005, respectively. He obtained the Ph.D. degree on multi-class
visual categorization systems at Computer Vision Center, UAB. Currently, Lecturer of Universitat de Barcelona. Partial time professor at the Universitat Oberta de Catalunya.

Cecilio Angulo received the M.Sc. degree in Mathematics from the University of Barcelona (1993) and a Ph.D. in Sciences from the Technical University of Catalonia (2001).
He is a associated professor at the same university from 2007. He is coordinator of the master's degree in Automatic Control and Robotics.

Fernando De la Torre received his B.Sc. in Telecommunications (1994), M.Sc. (1996), and Ph.D. (2002) in Electronic Engineering from La Salle of Engineering in Ramon Llull
University. He was an assistant and associate professor in La Salle (1997, 2000). Since 2005, he is a research assistant professor in the Robotics Institute at Carnegie Mellon
University.

L. Igual et al. / Pattern Recognition 47 (2014) 659–671 671

http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref15
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref15
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref15
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0035
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0035
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref17
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref17
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref17
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref18
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref18
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref18
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref19
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref19
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref19
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref20
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref20
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0040
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0040
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref22
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref23
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref23
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref24
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref24
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref24
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0045
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0045
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref26
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref26
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref27
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref27
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref27
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref28
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref28
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref28
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref29
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref31
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref31
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0050
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0050
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref33
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref34
http://refhub.elsevier.com/S0031-3203(13)00327-0/othref0055
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref36
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref36
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref37
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref37
http://refhub.elsevier.com/S0031-3203(13)00327-0/sbref37
http://mocap.cs.cmu.edu

	Continuous Generalized Procrustes analysis
	Introduction
	Previous work
	Generalized Procrustes analysis (GPA)
	Functional data analysis (FDA)

	Mathematical background
	Calculus
	Integration over the SO(3) group
	SO(3) parameterizations
	Haar measure


	Continuous generalized Procrustes analysis
	Energy functional for continuous generalized Procrustes analysis
	Optimization for CGPA

	Experimentation
	Data
	Methods and parameters
	Qualitative experiment with Stanford Bunny model
	Reference shape model experiment on 3D faces
	Subspace model experiment on 3D faces
	Subspace model experiment with MoCap
	Subspace model experiment with Athena and Venus

	Conclusions
	Conflict of interest
	Acknowledgments
	GPA fitting
	References




