toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Cristina Palmero; Albert Clapes; Chris Bahnsen; Andreas Møgelmose; Thomas B. Moeslund; Sergio Escalera edit   pdf
doi  openurl
  Title Multi-modal RGB-Depth-Thermal Human Body Segmentation Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 118 Issue 2 Pages (down) 217-239  
  Keywords Human body segmentation; RGB ; Depth Thermal  
  Abstract This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ PCB2016 Serial 2767  
Permanent link to this record
 

 
Author Cristina Palmero; Jordi Esquirol; Vanessa Bayo; Miquel Angel Cos; Pouya Ahmadmonfared; Joan Salabert; David Sanchez; Sergio Escalera edit   pdf
doi  openurl
  Title Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis Type Journal Article
  Year 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 122 Issue 2 Pages (down) 212–227  
  Keywords Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation  
  Abstract This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; 303.100 Approved no  
  Call Number Admin @ si @ PEB2017 Serial 2765  
Permanent link to this record
 

 
Author Mikkel Thogersen; Sergio Escalera; Jordi Gonzalez; Thomas B. Moeslund edit  url
openurl 
  Title Segmentation of RGB-D Indoor scenes by Stacking Random Forests and Conditional Random Fields Type Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 80 Issue Pages (down) 208–215  
  Keywords  
  Abstract This paper proposes a technique for RGB-D scene segmentation using Multi-class
Multi-scale Stacked Sequential Learning (MMSSL) paradigm. Following recent trends in state-of-the-art, a base classifier uses an initial SLIC segmentation to obtain superpixels which provide a diminution of data while retaining object boundaries. A series of color and depth features are extracted from the superpixels, and are used in a Conditional Random Field (CRF) to predict superpixel labels. Furthermore, a Random Forest (RF) classifier using random offset features is also used as an input to the CRF, acting as an initial prediction. As a stacked classifier, another Random Forest is used acting on a spatial multi-scale decomposition of the CRF confidence map to correct the erroneous labels assigned by the previous classifier. The model is tested on the popular NYU-v2 dataset.
The approach shows that simple multi-modal features with the power of the MMSSL
paradigm can achieve better performance than state of the art results on the same dataset.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MILAB; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ TEG2016 Serial 2843  
Permanent link to this record
 

 
Author Zhengying Liu; Zhen Xu; Sergio Escalera; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Adrien Pavao; Sebastien Treguer; Wei-Wei Tu edit   pdf
url  openurl
  Title Towards automated computer vision: analysis of the AutoCV challenges 2019 Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 135 Issue Pages (down) 196-203  
  Keywords Computer vision; AutoML; Deep learning  
  Abstract We present the results of recent challenges in Automated Computer Vision (AutoCV, renamed here for clarity AutoCV1 and AutoCV2, 2019), which are part of a series of challenge on Automated Deep Learning (AutoDL). These two competitions aim at searching for fully automated solutions for classification tasks in computer vision, with an emphasis on any-time performance. The first competition was limited to image classification while the second one included both images and videos. Our design imposed to the participants to submit their code on a challenge platform for blind testing on five datasets, both for training and testing, without any human intervention whatsoever. Winning solutions adopted deep learning techniques based on already published architectures, such as AutoAugment, MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only 20 minutes of GPU time). The novel contributions include strategies to deliver good preliminary results at any time during the learning process, such that a method can be stopped early and still deliver good performance. This feature is key for the adoption of such techniques by data analysts desiring to obtain rapidly preliminary results on large datasets and to speed up the development process. The soundness of our design was verified in several aspects: (1) Little overfitting of the on-line leaderboard providing feedback on 5 development datasets was observed, compared to the final blind testing on the 5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer vision classification tasks; (2) Error bars on the winners’ performance allow us to say with confident that they performed significantly better than the baseline solutions we provided; (3) The ranking of participants according to the any-time metric we designed, namely the Area under the Learning Curve, was different from that of the fixed-time metric, i.e. AUC at the end of the fixed time budget. We released all winning solutions under open-source licenses. At the end of the AutoDL challenge series, all data of the challenge will be made publicly available, thus providing a collection of uniformly formatted datasets, which can serve to conduct further research, particularly on meta-learning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ LXE2020 Serial 3427  
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source Type Journal Article
  Year 2015 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 5 Issue 2 Pages (down) 192-201  
  Keywords CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY  
  Abstract Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SED2015 Serial 2584  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: