|
Records |
Links |
|
Author |
David Rotger; Misael Rosales; Jaume Garcia; Oriol Pujol ; J. Mauri; Petia Radeva |


|
|
Title |
Active Vessel: A New Multimedia Workstation for Intravascular Ultrasound and Angiography Fusion |
Type |
Journal Article |
|
Year |
2003 |
Publication |
Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
30 |
Issue |
|
Pages  |
65-68 |
|
|
Keywords |
|
|
|
Abstract |
AcriveVessel is a new multimedia workstation which enables the visualization, acquisition and handling of both image modalities, on- and ofline. It enables DICOM v3.0 decompression and browsing, video acquisition,repmduction and storage for IntraVascular UltraSound (IVUS) and angiograms with their corresponding ECG,automatic catheter segmentation in angiography images (using fast marching algorithm). BSpline models definition for vessel layers on IVUS images sequence and an extensively validated tool to fuse information. This approach defines the correspondence of every IVUS image with its correspondent point in the angiogram and viceversa. The 3 0 reconstruction of the NUS catheterhessel enables real distance measurements as well as threedimensional visualization showing vessel tortuosity in the space. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RRG2003 |
Serial |
1647 |
|
Permanent link to this record |
|
|
|
|
Author |
Gerard Canal; Sergio Escalera; Cecilio Angulo |


|
|
Title |
A Real-time Human-Robot Interaction system based on gestures for assistive scenarios |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
CVIU |
|
|
Volume |
149 |
Issue |
|
Pages  |
65-77 |
|
|
Keywords |
Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation |
|
|
Abstract |
Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier B.V. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ CEA2016 |
Serial |
2768 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Sergio Escalera; Alex Carruesco Llorens; Carlos Andujar; Xavier Baro; Jordi Gonzalez |


|
|
Title |
Top-down model fitting for hand pose recovery in sequences of depth images |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
79 |
Issue |
|
Pages  |
63-75 |
|
|
Keywords |
|
|
|
Abstract |
State-of-the-art approaches on hand pose estimation from depth images have reported promising results under quite controlled considerations. In this paper we propose a two-step pipeline for recovering the hand pose from a sequence of depth images. The pipeline has been designed to deal with images taken from any viewpoint and exhibiting a high degree of finger occlusion. In a first step we initialize the hand pose using a part-based model, fitting a set of hand components in the depth images. In a second step we consider temporal data and estimate the parameters of a trained bilinear model consisting of shape and trajectory bases. We evaluate our approach on a new created synthetic hand dataset along with NYU and MSRA real datasets. Results demonstrate that the proposed method outperforms the most recent pose recovering approaches, including those based on CNNs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 600.098;MV;OR;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEC2018 |
Serial |
3203 |
|
Permanent link to this record |
|
|
|
|
Author |
Fatemeh Noroozi; Marina Marjanovic; Angelina Njegus; Sergio Escalera; Gholamreza Anbarjafari |

|
|
Title |
Audio-Visual Emotion Recognition in Video Clips |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Transactions on Affective Computing |
Abbreviated Journal |
TAC |
|
|
Volume |
10 |
Issue |
1 |
Pages  |
60-75 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a multimodal emotion recognition system, which is based on the analysis of audio and visual cues. From the audio channel, Mel-Frequency Cepstral Coefficients, Filter Bank Energies and prosodic features are extracted. For the visual part, two strategies are considered. First, facial landmarks’ geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames, which are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to key-frames summarizing videos. Finally, confidence outputs of all the classifiers from all the modalities are used to define a new feature space to be learned for final emotion label prediction, in a late fusion/stacking fashion. The experiments conducted on the SAVEE, eNTERFACE’05, and RML databases show significant performance improvements by our proposed system in comparison to current alternatives, defining the current state-of-the-art in all three databases. |
|
|
Address |
1 Jan.-March 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 602.143; 602.133;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ NMN2017 |
Serial |
3011 |
|
Permanent link to this record |
|
|
|
|
Author |
Jun Wan; Sergio Escalera; Francisco Perales; Josef Kittler |

|
|
Title |
Articulated Motion and Deformable Objects |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
79 |
Issue |
|
Pages  |
55-64 |
|
|
Keywords |
|
|
|
Abstract |
This guest editorial introduces the twenty two papers accepted for this Special Issue on Articulated Motion and Deformable Objects (AMDO). They are grouped into four main categories within the field of AMDO: human motion analysis (action/gesture), human pose estimation, deformable shape segmentation, and face analysis. For each of the four topics, a survey of the recent developments in the field is presented. The accepted papers are briefly introduced in the context of this survey. They contribute novel methods, algorithms with improved performance as measured on benchmarking datasets, as well as two new datasets for hand action detection and human posture analysis. The special issue should be of high relevance to the reader interested in AMDO recognition and promote future research directions in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEP2018 |
Serial |
3126 |
|
Permanent link to this record |