|
Records |
Links |
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |
|
|
Title |
Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
87 |
Issue |
|
Pages |
203-211 |
|
|
Keywords |
|
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 602.006; 603.053; 600.121 |
Approved |
no |
|
|
Call Number |
RLF2017b |
Serial |
2873 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
70 |
Issue |
|
Pages |
60-74 |
|
|
Keywords |
|
|
|
Abstract |
Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.
Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 601.197; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2017 |
Serial |
2886 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Anguelos Nicolaou; Dimosthenis Karatzas |
|
|
Title |
Improving patch‐based scene text script identification with ensembles of conjoined networks |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
67 |
Issue |
|
Pages |
85-96 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GNK2017 |
Serial |
2887 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas |
|
|
Title |
Self‐supervised learning of visual features through embedding images into text topic spaces |
Type |
Conference Article |
|
Year |
2017 |
Publication |
30th IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches. |
|
|
Address |
Honolulu; Hawaii; July 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPR2017 |
Serial |
2889 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |
|
|
Title |
Flowchart Recognition in Patent Information Retrieval |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Current Challenges in Patent Information Retrieval |
Abbreviated Journal |
|
|
|
Volume |
37 |
Issue |
|
Pages |
351-368 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
M. Lupu; K. Mayer; N. Kando; A.J. Trippe |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuL2017 |
Serial |
2896 |
|
Permanent link to this record |
|
|
|
|
Author |
Hana Jarraya; Muhammad Muzzamil Luqman; Jean-Yves Ramel |
|
|
Title |
Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
9657 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
B. Lamiroy; R Dueire Lins |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ JLR2017 |
Serial |
2928 |
|
Permanent link to this record |
|
|
|
|
Author |
Hana Jarraya; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs |
Type |
Conference Article |
|
Year |
2017 |
Publication |
8th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines |
|
|
Abstract |
We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction. |
|
|
Address |
Faro; Portugal; June 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ JRL2017a |
Serial |
2953 |
|
Permanent link to this record |
|
|
|
|
Author |
Lasse Martensson; Anders Hast; Alicia Fornes |
|
|
Title |
Word Spotting as a Tool for Scribal Attribution |
Type |
Conference Article |
|
Year |
2017 |
Publication |
2nd Conference of the association of Digital Humanities in the Nordic Countries |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
87-89 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Gothenburg; Suecia; March 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-91-88348-83-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DHN |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MHF2017 |
Serial |
2954 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Alicia Fornes; Josep Llados |
|
|
Title |
Towards the Alignment of Handwritten Music Scores |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
9657 |
Issue |
|
Pages |
103-116 |
|
|
Keywords |
Optical Music Recognition; Handwritten Music Scores; Dynamic Time Warping alignment |
|
|
Abstract |
It is very common to nd dierent versions of the same music work in archives of Opera Theaters. These dierences correspond to modications and annotations from the musicians. From the musicologist point of view, these variations are very interesting and deserve study.
This paper explores the alignment of music scores as a tool for automatically detecting the passages that contain such dierences. Given the diculties in the recognition of handwritten music scores, our goal is to align the music scores and at the same time, avoid the recognition of music elements as much as possible. After removing the sta lines, braces and ties, the bar lines are detected. Then, the bar units are described as a whole using the Blurred Shape Model. The bar units alignment is performed by using Dynamic Time Warping. The analysis of the alignment path is used to detect the variations in the music scores. The method has been evaluated on a subset of the CVC-MUSCIMA dataset, showing encouraging results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Bart Lamiroy; R Dueire Lins |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-319-52158-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 602.006; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RFL2017 |
Serial |
2955 |
|
Permanent link to this record |
|
|
|
|
Author |
Hana Jarraya; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Learning structural loss parameters on graph embedding applied on symbolic graphs |
Type |
Conference Article |
|
Year |
2017 |
Publication |
12th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset. |
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ JRL2017b |
Serial |
3073 |
|
Permanent link to this record |