toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta edit  url
openurl 
  Title Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases Type Journal Article
  Year (up) 2017 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 87 Issue Pages 203-211  
  Keywords  
  Abstract Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 602.006; 603.053; 600.121 Approved no  
  Call Number RLF2017b Serial 2873  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  openurl
  Title TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild Type Journal Article
  Year (up) 2017 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 70 Issue Pages 60-74  
  Keywords  
  Abstract Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.

Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 601.197; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GoK2017 Serial 2886  
Permanent link to this record
 

 
Author Lluis Gomez; Anguelos Nicolaou; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title Improving patch‐based scene text script identification with ensembles of conjoined networks Type Journal Article
  Year (up) 2017 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 67 Issue Pages 85-96  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GNK2017 Serial 2887  
Permanent link to this record
 

 
Author Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Self‐supervised learning of visual features through embedding images into text topic spaces Type Conference Article
  Year (up) 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.  
  Address Honolulu; Hawaii; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ GPR2017 Serial 2889  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados edit  doi
openurl 
  Title Flowchart Recognition in Patent Information Retrieval Type Book Chapter
  Year (up) 2017 Publication Current Challenges in Patent Information Retrieval Abbreviated Journal  
  Volume 37 Issue Pages 351-368  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor M. Lupu; K. Mayer; N. Kando; A.J. Trippe  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ RuL2017 Serial 2896  
Permanent link to this record
 

 
Author Hana Jarraya; Muhammad Muzzamil Luqman; Jean-Yves Ramel edit  doi
openurl 
  Title Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition Type Book Chapter
  Year (up) 2017 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 9657 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor B. Lamiroy; R Dueire Lins  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JLR2017 Serial 2928  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit   pdf
url  openurl
  Title Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs Type Conference Article
  Year (up) 2017 Publication 8th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines  
  Abstract We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction.  
  Address Faro; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017a Serial 2953  
Permanent link to this record
 

 
Author Lasse Martensson; Anders Hast; Alicia Fornes edit   pdf
isbn  openurl
  Title Word Spotting as a Tool for Scribal Attribution Type Conference Article
  Year (up) 2017 Publication 2nd Conference of the association of Digital Humanities in the Nordic Countries Abbreviated Journal  
  Volume Issue Pages 87-89  
  Keywords  
  Abstract  
  Address Gothenburg; Suecia; March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-91-88348-83-8 Medium  
  Area Expedition Conference DHN  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ MHF2017 Serial 2954  
Permanent link to this record
 

 
Author Pau Riba; Alicia Fornes; Josep Llados edit   pdf
url  isbn
openurl 
  Title Towards the Alignment of Handwritten Music Scores Type Book Chapter
  Year (up) 2017 Publication International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 9657 Issue Pages 103-116  
  Keywords Optical Music Recognition; Handwritten Music Scores; Dynamic Time Warping alignment  
  Abstract It is very common to nd di erent versions of the same music work in archives of Opera Theaters. These di erences correspond to modi cations and annotations from the musicians. From the musicologist point of view, these variations are very interesting and deserve study.
This paper explores the alignment of music scores as a tool for automatically detecting the passages that contain such di erences. Given the diculties in the recognition of handwritten music scores, our goal is to align the music scores and at the same time, avoid the recognition of music elements as much as possible. After removing the sta lines, braces and ties, the bar lines are detected. Then, the bar units are described as a whole using the Blurred Shape Model. The bar units alignment is performed by using Dynamic Time Warping. The analysis of the alignment path is used to detect the variations in the music scores. The method has been evaluated on a subset of the CVC-MUSCIMA dataset, showing encouraging results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Bart Lamiroy; R Dueire Lins  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-52158-9 Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 602.006; 600.121 Approved no  
  Call Number Admin @ si @ RFL2017 Serial 2955  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit  doi
openurl 
  Title Learning structural loss parameters on graph embedding applied on symbolic graphs Type Conference Article
  Year (up) 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017b Serial 3073  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: