toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yipeng Sun; Zihan Ni; Chee-Kheng Chng; Yuliang Liu; Canjie Luo; Chun Chet Ng; Junyu Han; Errui Ding; Jingtuo Liu; Dimosthenis Karatzas; Chee Seng Chan; Lianwen Jin edit   pdf
url  doi
openurl 
  Title ICDAR 2019 Competition on Large-Scale Street View Text with Partial Labeling – RRC-LSVT Type (up) Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1557-1562  
  Keywords  
  Abstract Robust text reading from street view images provides valuable information for various applications. Performance improvement of existing methods in such a challenging scenario heavily relies on the amount of fully annotated training data, which is costly and in-efficient to obtain. To scale up the amount of training data while keeping the labeling procedure cost-effective, this competition introduces a new challenge on Large-scale Street View Text with Partial Labeling (LSVT), providing 50, 000 and 400, 000 images in full and weak annotations, respectively. This competition aims to explore the abilities of state-of-the-art methods to detect and recognize text instances from large-scale street view images, closing the gap between research benchmarks and real applications. During the competition period, a total of 41 teams participated in the two proposed tasks with 132 valid submissions, ie, text detection and end-to-end text spotting. This paper includes dataset descriptions, task definitions, evaluation protocols and results summaries of the ICDAR 2019-LSVT challenge.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number Admin @ si @ SNC2019 Serial 3339  
Permanent link to this record
 

 
Author Chee-Kheng Chng; Yuliang Liu; Yipeng Sun; Chun Chet Ng; Canjie Luo; Zihan Ni; ChuanMing Fang; Shuaitao Zhang; Junyu Han; Errui Ding; Jingtuo Liu; Dimosthenis Karatzas; Chee Seng Chan; Lianwen Jin edit   pdf
url  doi
openurl 
  Title ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text – RRC-ArT Type (up) Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1571-1576  
  Keywords  
  Abstract This paper reports the ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text – RRC-ArT that consists of three major challenges: i) scene text detection, ii) scene text recognition, and iii) scene text spotting. A total of 78 submissions from 46 unique teams/individuals were received for this competition. The top performing score of each challenge is as follows: i) T1 – 82.65%, ii) T2.1 – 74.3%, iii) T2.2 – 85.32%, iv) T3.1 – 53.86%, and v) T3.2 – 54.91%. Apart from the results, this paper also details the ArT dataset, tasks description, evaluation metrics and participants' methods. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ CLS2019 Serial 3340  
Permanent link to this record
 

 
Author Nibal Nayef; Yash Patel; Michal Busta; Pinaki Nath Chowdhury; Dimosthenis Karatzas; Wafa Khlif; Jiri Matas; Umapada Pal; Jean-Christophe Burie; Cheng-lin Liu; Jean-Marc Ogier edit   pdf
url  doi
openurl 
  Title ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and Recognition — RRC-MLT-2019 Type (up) Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1582-1587  
  Keywords  
  Abstract With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and push the state-of-the-art forward, the proposed competition builds on top of the RRC-MLT-2017 with an additional end-to-end task, an additional language in the real images dataset, a large scale multi-lingual synthetic dataset to assist the training, and a baseline End-to-End recognition method. The real dataset consists of 20,000 images containing text from 10 languages. The challenge has 4 tasks covering various aspects of multi-lingual scene text: (a) text detection, (b) cropped word script classification, (c) joint text detection and script classification and (d) end-to-end detection and recognition. In total, the competition received 60 submissions from the research and industrial communities. This paper presents the dataset, the tasks and the findings of the presented RRC-MLT-2019 challenge.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NPB2019 Serial 3341  
Permanent link to this record
 

 
Author Arnau Baro; Alicia Fornes; Carles Badal edit   pdf
openurl 
  Title Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism Type (up) Conference Article
  Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BFB2020 Serial 3448  
Permanent link to this record
 

 
Author Jialuo Chen; M.A.Souibgui; Alicia Fornes; Beata Megyesi edit   pdf
openurl 
  Title A Web-based Interactive Transcription Tool for Encrypted Manuscripts Type (up) Conference Article
  Year 2020 Publication 3rd International Conference on Historical Cryptology Abbreviated Journal  
  Volume Issue Pages 52-59  
  Keywords  
  Abstract Manual transcription of handwritten text is a time consuming task. In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets. To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources. The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s). This process is carried out in an interactive fashion with
the user to obtain more accurate results. For discovering and testing, the developed web tool is freely available.
 
  Address Virtual; June 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HistoCrypt  
  Notes DAG; 600.140; 602.230; 600.121 Approved no  
  Call Number Admin @ si @ CSF2020 Serial 3447  
Permanent link to this record
 

 
Author Veronica Romero; Emilio Granell; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez edit   pdf
url  openurl
  Title Information Extraction in Handwritten Marriage Licenses Books Type (up) Conference Article
  Year 2019 Publication 5th International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages 66-71  
  Keywords  
  Abstract Handwritten marriage licenses books are characterized by a simple structure of the text in the records with an evolutionary vocabulary, mainly composed of proper names that change along the time. This distinct vocabulary makes automatic transcription and semantic information extraction difficult tasks. Previous works have shown that the use of category-based language models and a Grammatical Inference technique known as MGGI can improve the accuracy of these
tasks. However, the application of the MGGI algorithm requires an a priori knowledge to label the words of the training strings, that is not always easy to obtain. In this paper we study how to automatically obtain the information required by the MGGI algorithm using a technique based on Confusion Networks. Using the resulting language model, full handwritten text recognition and information extraction experiments have been carried out with results supporting the proposed approach.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HIP  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RGF2019 Serial 3352  
Permanent link to this record
 

 
Author Manuel Carbonell; Joan Mas; Mauricio Villegas; Alicia Fornes; Josep Llados edit   pdf
url  doi
openurl 
  Title End-to-End Handwritten Text Detection and Transcription in Full Pages Type (up) Conference Article
  Year 2019 Publication 2nd International Workshop on Machine Learning Abbreviated Journal  
  Volume 5 Issue Pages 29-34  
  Keywords Handwritten Text Recognition; Layout Analysis; Text segmentation; Deep Neural Networks; Multi-task learning  
  Abstract When transcribing handwritten document images, inaccuracies in the text segmentation step often cause errors in the subsequent transcription step. For this reason, some recent methods propose to perform the recognition at paragraph level. But still, errors in the segmentation of paragraphs can affect
the transcription performance. In this work, we propose an end-to-end framework to transcribe full pages. The joint text detection and transcription allows to remove the layout analysis requirement at test time. The experimental results show that our approach can achieve comparable results to models that assume
segmented paragraphs, and suggest that joining the two tasks brings an improvement over doing the two tasks separately.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR WML  
  Notes DAG; 600.140; 601.311; 600.140 Approved no  
  Call Number Admin @ si @ CMV2019 Serial 3353  
Permanent link to this record
 

 
Author Asma Bensalah; Pau Riba; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title Shoot less and Sketch more: An Efficient Sketch Classification via Joining Graph Neural Networks and Few-shot Learning Type (up) Conference Article
  Year 2019 Publication 13th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 80-85  
  Keywords Sketch classification; Convolutional Neural Network; Graph Neural Network; Few-shot learning  
  Abstract With the emergence of the touchpad devices and drawing tablets, a new era of sketching started afresh. However, the recognition of sketches is still a tough task due to the variability of the drawing styles. Moreover, in some application scenarios there is few labelled data available for training,
which imposes a limitation for deep learning architectures. In addition, in many cases there is a need to generate models able to adapt to new classes. In order to cope with these limitations, we propose a method based on few-shot learning and graph neural networks for classifying sketches aiming for an efficient neural model. We test our approach with several databases of
sketches, showing promising results.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.140; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ BRF2019 Serial 3354  
Permanent link to this record
 

 
Author Pau Riba; Anjan Dutta; Lutz Goldmann; Alicia Fornes; Oriol Ramos Terrades; Josep Llados edit   pdf
url  doi
openurl 
  Title Table Detection in Invoice Documents by Graph Neural Networks Type (up) Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 122-127  
  Keywords  
  Abstract Tabular structures in documents offer a complementary dimension to the raw textual data, representing logical or quantitative relationships among pieces of information. In digital mail room applications, where a large amount of
administrative documents must be processed with reasonable accuracy, the detection and interpretation of tables is crucial. Table recognition has gained interest in document image analysis, in particular in unconstrained formats (absence of rule lines, unknown information of rows and columns). In this work, we propose a graph-based approach for detecting tables in document images. Instead of using the raw content (recognized text), we make use of the location, context and content type, thus it is purely a structure perception approach, not dependent on the language and the quality of the text
reading. Our framework makes use of Graph Neural Networks (GNNs) in order to describe the local repetitive structural information of tables in invoice documents. Our proposed model has been experimentally validated in two invoice datasets and achieved encouraging results. Additionally, due to the scarcity
of benchmark datasets for this task, we have contributed to the community a novel dataset derived from the RVL-CDIP invoice data. It will be publicly released to facilitate future research.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.140; 601.302; 602.167; 600.121; 600.141 Approved no  
  Call Number Admin @ si @ RDG2019 Serial 3355  
Permanent link to this record
 

 
Author Ekta Vats; Anders Hast; Alicia Fornes edit   pdf
url  doi
openurl 
  Title Training-Free and Segmentation-Free Word Spotting using Feature Matching and Query Expansion Type (up) Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1294-1299  
  Keywords Word spotting; Segmentation-free; Trainingfree; Query expansion; Feature matching  
  Abstract Historical handwritten text recognition is an interesting yet challenging problem. In recent times, deep learning based methods have achieved significant performance in handwritten text recognition. However, handwriting recognition using deep learning needs training data, and often, text must be previously segmented into lines (or even words). These limitations constrain the application of HTR techniques in document collections, because training data or segmented words are not always available. Therefore, this paper proposes a training-free and segmentation-free word spotting approach that can be applied in unconstrained scenarios. The proposed word spotting framework is based on document query word expansion and relaxed feature matching algorithm, which can easily be parallelised. Since handwritten words posses distinct shape and characteristics, this work uses a combination of different keypoint detectors
and Fourier-based descriptors to obtain a sufficient degree of relaxed matching. The effectiveness of the proposed method is empirically evaluated on well-known benchmark datasets using standard evaluation measures. The use of informative features along with query expansion significantly contributed in efficient performance of the proposed method.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ VHF2019 Serial 3356  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: