toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mohammed Al Rawi; Dimosthenis Karatzas edit   pdf
openurl 
  Title On the Labeling Correctness in Computer Vision Datasets Type (up) Conference Article
  Year 2018 Publication Proceedings of the Workshop on Interactive Adaptive Learning, co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image datasets have heavily been used to build computer vision systems.
These datasets are either manually or automatically labeled, which is a
problem as both labeling methods are prone to errors. To investigate this problem, we use a majority voting ensemble that combines the results from several Convolutional Neural Networks (CNNs). Majority voting ensembles not only enhance the overall performance, but can also be used to estimate the confidence level of each sample. We also examined Softmax as another form to estimate posterior probability. We have designed various experiments with a range of different ensembles built from one or different, or temporal/snapshot CNNs, which have been trained multiple times stochastically. We analyzed CIFAR10, CIFAR100, EMNIST, and SVHN datasets and we found quite a few incorrect
labels, both in the training and testing sets. We also present detailed confidence analysis on these datasets and we found that the ensemble is better than the Softmax when used estimate the per-sample confidence. This work thus proposes an approach that can be used to scrutinize and verify the labeling of computer vision datasets, which can later be applied to weakly/semi-supervised learning. We propose a measure, based on the Odds-Ratio, to quantify how many of these incorrectly classified labels are actually incorrectly labeled and how many of these are confusing. The proposed methods are easily scalable to larger datasets, like ImageNet, LSUN and SUN, as each CNN instance is trained for 60 epochs; or even faster, by implementing a temporal (snapshot) ensemble.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECML-PKDDW  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ RaK2018 Serial 3144  
Permanent link to this record
 

 
Author Sounak Dey; Anjan Dutta; Suman Ghosh; Ernest Valveny; Josep Llados edit   pdf
openurl 
  Title Aligning Salient Objects to Queries: A Multi-modal and Multi-object Image Retrieval Framework Type (up) Conference Article
  Year 2018 Publication 14th Asian Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper we propose an approach for multi-modal image retrieval in multi-labelled images. A multi-modal deep network architecture is formulated to jointly model sketches and text as input query modalities into a common embedding space, which is then further aligned with the image feature space. Our architecture also relies on a salient object detection through a supervised LSTM-based visual attention model learned from convolutional features. Both the alignment between the queries and the image and the supervision of the attention on the images are obtained by generalizing the Hungarian Algorithm using different loss functions. This permits encoding the object-based features and its alignment with the query irrespective of the availability of the co-occurrence of different objects in the training set. We validate the performance of our approach on standard single/multi-object datasets, showing state-of-the art performance in every dataset.  
  Address Perth; Australia; December 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACCV  
  Notes DAG; 600.097; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ DDG2018a Serial 3151  
Permanent link to this record
 

 
Author Sounak Dey; Anjan Dutta; Suman Ghosh; Ernest Valveny; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch Type (up) Conference Article
  Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 916 - 921  
  Keywords  
  Abstract In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets.  
  Address Beijing; China; August 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 602.167; 602.168; 600.097; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ DDG2018b Serial 3152  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas; Alberto Valcarce edit  openurl
  Title Libraries as New Innovation Hubs: The Library Living Lab Type (up) Conference Article
  Year 2018 Publication 30th ISPIM Innovation Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Libraries are in deep transformation both in EU and around the world, and they are thriving within a great window of opportunity for innovation. In this paper, we show how the Library Living Lab in Barcelona participated of this changing scenario and contributed to create the Bibliolab program, where more than 200 public libraries give voice to their users in a global user-centric innovation initiative, using technology as enabling factor. The Library Living Lab is a real 4-helix implementation where Universities, Research Centers, Public Administration, Companies and the Neighbors are joint together to explore how technology transforms the cultural experience of people. This case is an example of scalability and provides reference tools for policy making, sustainability, user engage methodologies and governance. We provide specific examples of new prototypes and services that help to understand how to redefine the role of the Library as a real hub for social innovation.  
  Address Stockholm; May 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISPIM  
  Notes DAG; MV; 600.097; 600.121; 600.129;SIAI Approved no  
  Call Number Admin @ si @ VKV2018b Serial 3154  
Permanent link to this record
 

 
Author Lei Kang; Juan Ignacio Toledo; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol edit   pdf
url  openurl
  Title Convolve, Attend and Spell: An Attention-based Sequence-to-Sequence Model for Handwritten Word Recognition Type (up) Conference Article
  Year 2018 Publication 40th German Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 459-472  
  Keywords  
  Abstract This paper proposes Convolve, Attend and Spell, an attention based sequence-to-sequence model for handwritten word recognition. The proposed architecture has three main parts: an encoder, consisting of a CNN and a bi-directional GRU, an attention mechanism devoted to focus on the pertinent features and a decoder formed by a one-directional GRU, able to spell the corresponding word, character by character. Compared with the recent state-of-the-art, our model achieves competitive results on the IAM dataset without needing any pre-processing step, predefined lexicon nor language model. Code and additional results are available in https://github.com/omni-us/research-seq2seq-HTR.  
  Address Stuttgart; Germany; October 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GCPR  
  Notes DAG; 600.097; 603.057; 302.065; 601.302; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ KTR2018 Serial 3167  
Permanent link to this record
 

 
Author Pau Riba; Andreas Fischer; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title Learning Graph Distances with Message Passing Neural Networks Type (up) Conference Article
  Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2239-2244  
  Keywords ★Best Paper Award★  
  Abstract Graph representations have been widely used in pattern recognition thanks to their powerful representation formalism and rich theoretical background. A number of error-tolerant graph matching algorithms such as graph edit distance have been proposed for computing a distance between two labelled graphs. However, they typically suffer from a high
computational complexity, which makes it difficult to apply
these matching algorithms in a real scenario. In this paper, we propose an efficient graph distance based on the emerging field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure and learns a metric with a siamese network approach. The performance of the proposed graph distance is validated in two application cases, graph classification and graph retrieval of handwritten words, and shows a promising performance when compared with
(approximate) graph edit distance benchmarks.
 
  Address Beijing; China; August 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.097; 603.057; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RFL2018 Serial 3168  
Permanent link to this record
 

 
Author Jialuo Chen; Pau Riba; Alicia Fornes; Juan Mas; Josep Llados; Joana Maria Pujadas-Mora edit   pdf
doi  openurl
  Title Word-Hunter: A Gamesourcing Experience to Validate the Transcription of Historical Manuscripts Type (up) Conference Article
  Year 2018 Publication 16th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 528-533  
  Keywords Crowdsourcing; Gamification; Handwritten documents; Performance evaluation  
  Abstract Nowadays, there are still many handwritten historical documents in archives waiting to be transcribed and indexed. Since manual transcription is tedious and time consuming, the automatic transcription seems the path to follow. However, the performance of current handwriting recognition techniques is not perfect, so a manual validation is mandatory. Crowdsourcing is a good strategy for manual validation, however it is a tedious task. In this paper we analyze experiences based in gamification
in order to propose and design a gamesourcing framework that increases the interest of users. Then, we describe and analyze our experience when validating the automatic transcription using the gamesourcing application. Moreover, thanks to the combination of clustering and handwriting recognition techniques, we can speed up the validation while maintaining the performance.
 
  Address Niagara Falls, USA; August 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.097; 603.057; 600.121 Approved no  
  Call Number Admin @ si @ CRF2018 Serial 3169  
Permanent link to this record
 

 
Author Manuel Carbonell; Mauricio Villegas; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title Joint Recognition of Handwritten Text and Named Entities with a Neural End-to-end Model Type (up) Conference Article
  Year 2018 Publication 13th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 399-404  
  Keywords Named entity recognition; Handwritten Text Recognition; neural networks  
  Abstract When extracting information from handwritten documents, text transcription and named entity recognition are usually faced as separate subsequent tasks. This has the disadvantage that errors in the first module affect heavily the
performance of the second module. In this work we propose to do both tasks jointly, using a single neural network with a common architecture used for plain text recognition. Experimentally, the work has been tested on a collection of historical marriage records. Results of experiments are presented to show the effect on the performance for different
configurations: different ways of encoding the information, doing or not transfer learning and processing at text line or multi-line region level. The results are comparable to state of the art reported in the ICDAR 2017 Information Extraction competition, even though the proposed technique does not use any dictionaries, language modeling or post processing.
 
  Address Vienna; Austria; April 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.097; 603.057; 601.311; 600.121 Approved no  
  Call Number Admin @ si @ CVF2018 Serial 3170  
Permanent link to this record
 

 
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Learning from# Barcelona Instagram data what Locals and Tourists post about its Neighbourhoods Type (up) Conference Article
  Year 2018 Publication 15th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 11134 Issue Pages 530-544  
  Keywords  
  Abstract Massive tourism is becoming a big problem for some cities, such as Barcelona, due to its concentration in some neighborhoods. In this work we gather Instagram data related to Barcelona consisting on images-captions pairs and, using the text as a supervisory signal, we learn relations between images, words and neighborhoods. Our goal is to learn which visual elements appear in photos when people is posting about each neighborhood. We perform a language separate treatment of the data and show that it can be extrapolated to a tourists and locals separate analysis, and that tourism is reflected in Social Media at a neighborhood level. The presented pipeline allows analyzing the differences between the images that tourists and locals associate to the different neighborhoods. The proposed method, which can be extended to other cities or subjects, proves that Instagram data can be used to train multi-modal (image and text) machine learning models that are useful to analyze publications about a city at a neighborhood level. We publish the collected dataset, InstaBarcelona and the code used in the analysis.  
  Address Munich; Alemanya; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.129; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ GGG2018b Serial 3176  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type (up) Conference Article
  Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal  
  Volume 11455 Issue Pages 71-82  
  Keywords  
  Abstract Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NDC2018 Serial 3178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: