
Learning Graph Distances with
Message Passing Neural Networks

Pau Riba∗, Andreas Fischer†‡, Josep Lladós∗ and Alicia Fornés∗
∗Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Barcelona, Spain

Email: {priba, josep, afornes}@cvc.uab.es
†Department of Informatics, DIVA Group, University of Fribourg, Fribourg, Switzerland

‡Institute of Complex Systems, University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
Email: andreas.fischer@unifr.ch

Abstract—Graph representations have been widely used in
pattern recognition thanks to their powerful representation
formalism and rich theoretical background. A number of error-
tolerant graph matching algorithms such as graph edit distance
have been proposed for computing a distance between two
labelled graphs. However, they typically suffer from a high
computational complexity, which makes it difficult to apply
these matching algorithms in a real scenario. In this paper,
we propose an efficient graph distance based on the emerging
field of geometric deep learning. Our method employs a message
passing neural network to capture the graph structure and learns
a metric with a siamese network approach. The performance
of the proposed graph distance is validated in two application
cases, graph classification and graph retrieval of handwritten
words, and shows a promising performance when compared with
(approximate) graph edit distance benchmarks.

I. INTRODUCTION

Graph-based representations have been widely used in dif-
ferent fields such as pattern recognition [1], bioinformatics [2]
etc. Graphs are powerful and flexible representations able to
describe shapes in terms of relationships between constituent
parts or primitives. In document analysis, and in particular
in handwriting recognition, graphs can perfectly capture the
structure of shapes consisting in line(stroke)-based compo-
nents. Graph-based representations can capture the structural
invariance among writer styles or the inherent stroke variability
of handwriting. Although statistical representations are still
on top of the state of the art in handwritten word spotting
and recognition, the new advances in graph matching have
resulted in approaches whose performance is approaching
the benchmark. Thus, graph-based approaches are nowadays
competitive not as an alternative but complementary methods.
Richer models that include structure-invariant representations
of strokes allow to tackle with multiwriter scenarios avoiding
specific learning for each writing style.

Since graphs are symbolic representations, they are more
complex than vectorial representations such as SIFT or HOG,
where simple mathematical operations can be applied. Basic
operations in the vector domain have to be formally defined
for graph data. When dealing with graphs, an important
property is the ability to compare two graphs in terms of a
similarity or distance. Lots of efforts have been made in this
direction, for instance, error-tolerant or inexact graph matching

algorithms have been proposed to cope with deformations
between graphs. The problem consists in finding the minimum
transformation cost such that an isomorphism exists between
the transformed graph and the second one. Graph edit distance
(GED) [3] algorithms are widely used as error-tolerant graph
matching methods. The main drawback of GED is the time
complexity which is exponential with respect to the number of
nodes of the input graphs. Hence, GED is unfeasible in a real
scenario without constraints in terms of graph size. Recently,
several algorithms have been proposed to cope with this
complexity [4], [5]. However, these approximate algorithms
only consider very local node structures in their computation.

The success of convolutional neural networks (CNNs) [6]
in different fields such as computer vision and natural lan-
guage processing, has increased the interest of extending
these frameworks to non-Euclidean structures, such as graphs
and manifolds. These extensions are called geometric deep
learning1. This emerging field has provided new learning tools
when dealing with graphs [2], [7], introducing a huge range
of novel applications to the field.

In this work, we propose a method to learn an enriched
graph representation and a graph distance with a message pass-
ing neural network. Distance learning for graphs is achieved
with a siamese architecture, inspired by earlier work in dis-
tance learning for images with siamese neural networks [8].
A siamese architecture uses the same model and weights to
learn a representation where distances can be computed. The
proposed approach is validated using standard graph datasets
for letters and handwritten words. In this application scenario,
the proposed approach based on a message passing neural
network shows competitive results. Thus the use of structural
information is a solid and promising complement to improve
the state of the art in word recognition and spotting.

The rest of this paper is organised as follows. Section II
reviews the related work. Section III describes the algorithm to
learn a suitable representation for comparing pairs of graphs.
Section IV presents the experimental validation. Finally, Sec-
tion V draws the conclusions and future work.

1http://geometricdeeplearning.com/

II. RELATED WORK

A. Graph edit distance

Graph edit distance (GED) [3] evaluates the similarity of
two graphs in terms of edit operations. The computation of
the distance is inspired by the string edit distance formulation.
Thus, the main idea is to compute the minimum cost trans-
formation from the source graph to the target one in terms
of a sequence of edit operations. The typical edit operations
are node and edge insertion, deletion and substitution. Each
edit operation has an associated that is added to the final edit
distance at every step. Among all the possible edit sequences,
the distance is formulated in terms of the minimum cost edit
sequence. GED algorithm finds an optimal edit sequence, but
its computational complexity is exponential in the number of
nodes of the involved graphs. Formally, GED is defined as

d(G1, G2) = min
(e1,...,ek)∈Υ(G1,G2)

k∑
i=1

c(ei),

where Υ(G1, G2) denotes the set of edit paths transforming
G1 into G2, and c is the cost function of the edit path ei. Due
to the computational complexity, several approximations to
GED have been proposed. Bipartite graph matching (BP) algo-
rithm, proposed by Riesen et al. [4], is based on the assignment
problem solution using a cost matrix with the edit operations
costs. It provides an upper bound of order O((n1 + n2)3)
of the original GED. Another approximation called Hausdorff
Edit Distance (HED) was proposed by Fischer et al. [5]. It is
based on the Hausdorff matching and provides a lower bound
of order O(n1 · n2) of the original graph edit distance. Many
other proposals have been put forward on how to obtain an
efficient and accurate approximation of GED [9].

A typical drawback of the approximation algorithms is that
they rely only on local edge structures rather than global
information. Some efforts have been made to improve the per-
formance by increasing the node context at matching time [10].
However, obtaining a better knowledge on the relation of each
node within the graph is still an open issue. In this work, we
propose to learn a metric between graphs able to distinguish
two classes rather than compute an exact edit distance.

B. Graph-based Keyword Spotting

Keyword Spotting (KWS) is defined as the task of re-
trieving instances of a given keyword in a document with-
out explicitly transcribing it. Graph representations for KWS
have gained popularity in the literature. Wang et al. [11]
represented handwritten words using characteristic skeleton
points i.e. starting/ending, high-curved and branch points,
labelled with shape context features. In [12] a convexity-based
representation is proposed nodes represent convexities labelled
with shape descriptors. These works faced the problem of
segmentation based keyword spotting. More recently Riba et
al. [13] proposed a segmentation free approach based on graph
indexation. Stauffer et al. [14] proposed a pure structural
representation, where the nodes are only labelled with their
image coordinates. Although BP is the usually used algorithm,

it has the drawback that is not able to learn adapting the costs
to the particularities of handwriting.

C. Geometric deep learning

Geometric deep learning (GDL) generalises deep neural
models to non-Euclidean data, i.e.graphs and manifolds [15].
In this work, we are focusing on the graph domain. Geometric
deep learning provides tools able to learn representations at
graph or node level providing information on its topology.
Several recent works have proposed different architectures.
In general, these learning architectures on graphs can be
divided in two groups, spatial and spectral domain respectively.
Spatial domain methods extend the idea of CNN at the image
domain by moving a filter across nodes and applying a set
of operations involving the local neighbourhood to compute
a new representation [16], [17]. Spectral domain architectures
take advantage of the spectral graph theory [18] in order to
generalize the convolution operation to arbitrary graphs by
means of the graph Laplacian [19], [20].

Recently, Gilmer et al. [2] proposed an approach named
Message Passing Neural Networks (MPNNs) as a general
supervised learning framework for graphs. This approach is
able to generalize the aforementioned methodologies to have a
common pipeline. Therefore, they redefine the previous spatial
and spectral architectures using the MPNN framework by
means of two phases: message passing and readout.

In the message passing phase, the hidden state htv of each
node v is updated by a node update function Ut which receives
a message mt+1

v collected from the neighbouring nodes. This
phase is repeated during T time steps and is defined as:

mt+1
v =

∑
w∈N (v)

Mt(h
t
v, h

t
w, evw), (1)

where htw and htv are the hidden states of nodes v and w at
iteration t and N (v) denotes the neighbours of v in graph G.
Afterwards, the hidden state of node v is updated according
to the message mt+1

v .

ht+1
v = Ut(h

t
v,m

t+1
v) (2)

The message passing phase gathers structural information
of the graph and embeds this information as node labels. The
readout phase computes a feature vector for the whole graph
based on the set of hidden states of the nodes. Hence, the
readout function R must be permutation invariant,

ŷ = R({hTv |v ∈ G}) (3)

The three functions are learned and must be differentiable.
In the proposed model, the readout function will be omitted
in order to have a graph metric space.

III. ARCHITECTURE BASED ON A SIAMESE MPNN MODEL

Following the idea of a siamese neural network, a twin
MPNN with shared weights is applied to the input graphs.
MPNNs have the ability to update the hidden state of a par-
ticular node v with the information of its neighbourhood sent

through a particular edge e. Through the different time steps,
the system is gathering structural information of the local
context of the node. Thus, the MPNN approach is learning
an enriched representation of the original graph. The readout
function R that is applied to this enriched representation is able
to map a graph G to a vector space. The consideration of this
readout function raises two drawbacks: first, there is no node
correspondence between the graphs; and second, individual
properties for nodes and edges are not taken into account.

To avoid these drawbacks, we discard the readout phase and
directly compute a distance between enriched graph represen-
tations provided by the message passing phase. Therefore, we
propose to follow a GED idea to obtain a similarity metric
between graphs. Figure 1 shows the proposed architecture.

Fig. 1. Architecture for the proposed siamese MPNN model. Pairs of message
and update functions are iterated a predefined set of time steps T .

A. MPNN Model

Our architecture is based on the model proposed by Li et
al. [17]. It assumes discrete edge types. The message function
is formulated as M(hv, hw, evw) = Aevw

hw, where Aevw
is a

learned matrix for each possible edge label. To overcome the
restriction imposed by this function, Gilmer et al. [2] modified
the message function as M(hv, hw, evw) = A(evw)hw to
allow vectorial data as edge attributes, where A(evw) is a
neural network which maps the edge vector to a matrix. The
update function is defined as U(hv,mv) = GRU(hv,mv),
where GRU is the Gated Recurrent Unit [21]. For comparison
reasons, the readout function has been defined as

R =
∑
v∈V

σ(i(h(T)
v , h0

v))� (j(hTv)),

where i and j are neural networks and σ is the Sigmoid
activation function.

B. Similarity

As explained in Section II, GED is a traditional metric to
measure the similarity between graphs. To use this similarity
metric in the proposed siamese approach, we have two main
restrictions. First the approach must be computationally fast.
Second it must be differentiable, able to backpropagate the
gradients and update the MPNN weights. We propose a simple
but effective metric based on the Hausdorff distance. The
Hausdorff distance of two sets A and B on a metric space,
with the metric d(a, b) where a ∈ A and b ∈ B is defined as:

H(A,B) = max
(

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
)

For finite sets A,B the Hausdorff distance is defined as:

H(A,B) = max
(

max
a∈A

inf
b∈B

d(a, b),max
b∈B

inf
a∈A

d(a, b)
)

By definition, Hausdorff distance is very sensitive to outliers.
Hence, as proposed in [5], replacing the maximum operator
with the sum, forces the distance to take into account all
nearest neighbour distances and becomes more robust to noise
than the original one. Thus, we can define the distance as:

Ĥ(A,B) =
∑
a∈A

inf
b∈B

d(a, b) +
∑
b∈B

inf
a∈A

d(a, b)

Therefore, we define the distance between two graphs g1 =
(V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2) as:

d(g1, g2) =
Ĥ(V1, V2)

|V1|+ |V2|
The distance d can be seen as a specific case of HED where
all nodes must be substituted and there are no insertions nor
deletions. Moreover, the edges are not taken into account be-
cause the local structure exploited by HED has been embedded
during the message passing phase.

C. Training

The proposed approach is trained in a supervised manner
knowing whether or not a pair of graphs belong to the
same class. All the models were trained using the Stochastic
Gradient Descent optimiser with Momentum and weight decay
i.e. L2 regularization. The proposed objective function that is
minimised is a Contrastive loss function based on the proposed
distance, and it is defined as:

l(DW) = Y
1

2
(DW)2 + (1− Y)

1

2
{max(0,m−DW)}2

where DW = d(GW (X1), GW (X2)) is a distance defined
between the outputs of the message phase of our model GW

with shared weights W ; Y ∈ {0, 1} is a label indicating
positive or negative pairs of graphs, i.e. they belong to the
same class; and m is a margin. In this work, m is set to 1.0.

IV. EXPERIMENTAL VALIDATION

For validating the proposed approach, two application cases
have been considered, graph classification and graph retrieval.
All the code is available at github.com/priba/siamese ged.

A. Datasets

The experimental evaluation uses benchmarks for graph
classification viz. Letters and Histograph datasets whereas
graph retrieval has been evaluated on a keyword spotting
dataset viz. George Washington (GW) dataset.

Letters: The Letters graph database is a part of the IAM
graph repository2 [22] and consists of 6750 graphs represent-
ing 15 different capital letters of the Roman alphabet with
different levels of noise generated from a prototype graph.
The dataset is split into train, validation and test sets, where
each set contains 750 graphs uniformly distributed among
the classes. The goal is to predict the class of the graphs
representing one of the 15 different letters. The nodes of the
graphs are labelled with a two-dimensional attribute giving its
position, and edges are unlabelled.

HistoGraph: The HistoGraph dataset3 [23] consists of
graphs representing words from the communicating letters
written by the first US president, George Washington. It
consists of 293 graphs generated from 30 different words.
Given a word, the goal is to predict its class, choosing among
the 30 words. Nodes are only labelled with their position in
the image. Furthermore, this dataset used 6 different graph
representation paradigms for delineating a single word into a
graph, which results in 6 different subsets of graphs. The entire
dataset is divided into 90, 60 and 143 graphs respectively for
train, validation and test. Here, we will use the most promising
subsets of graphs according to [23]: Keypoint and Projection.

The summary of both datasets is presented in Table I and
some example graphs are shown in Figure 2.

TABLE I
DETAILS ON LETTERS AND HISTOGRAPH DATASETS

Datasets Subset #Graphs #Class Avg.(|V |, |E|) Labels

Letters
LOW 2250

(750, 750, 750) 15
(4.676, 3.132) (x,y)

positionMED (4.675, 3.206)
HIGH (4.670, 4.500)

HistoGraph Keypoint 293
(90, 60, 143) 30 (73, 67) (x,y)

positionProjection (44, 41)

George Washington: The George Washington dataset intro-
duced in [24] is based on handwritten letters in English. It
consists of twenty pages with a total of 4, 894 handwritten
words. The same experimental setup from [25] has been used.
This dataset consists of 105 different keywords, with 2, 447,
1, 000 and 1, 224 words for train, validation and test sets. This
setting is known as the segmentation-based query-by-example
task where all the words have been previously cropped. From
the word images, the Keypoint protocol presented in the
Histograph dataset is used to extract the graphs.

Graph Representation: All the datasets presented in this
work only contain spatial (node labels) and structural (unla-
belled edges) information. However, in order to exploit the
power of message passing, edges are enriched by adding the
spatial relation between nodes, i.e. l2-distance and angle of

2Available at http://www.fki.inf.unibe.ch/databases/iam-graph-database
3Available at http://www.histograph.ch/

(a)

(b) (c)

Fig. 2. (a) A graph representation of a capital letter at different distortion
levels from the Letters dataset (extracted from [5]), (b) a handwritten word
belonging to the George Washington dataset, (c) a graph representation of the
handwritten word in (b).

the edge. Thus, the graphs are made directed. This is done in
the specific domain of pattern recognition where the spatial
relation within the parts is important.

B. Experimental Setup

The experiments presented in this paper make use of the
following hyper-parameters. T is set to 3 time steps. Regarding
the message passing function, A is a neural network which
maps the edge features 2 to 64 by a 64 matrix making use
of 4 linear layers and ReLU activation function. Hence, the
message has a size of 64. The update function uses a hidden
state of size 64 for the GRU network. Regarding the readout
function, i and j are 2 layer neural networks with the ReLU
activation function which maps 66 and 64 vectors to a vector of
size corresponding to the number of classes at each problem.
The model has been trained using 400 epochs for the Letters
dataset and 200 epochs for the other experiments.

Two application cases have been proposed to evaluate our
approach, classification and retrieval of graphs.

Classification: The first application scenario consists in
classifying a graph among a set of different classes. Following
the setup proposed by [5], a k-nearest neighbour classifier
(KNN) is used based on graph distances. The system is
trained as a siamese approach selecting pairs in the training
set and validated on pairs within the validation set with a
simple threshold. In order to balance the number of positive
and negative samples in training time, a Weighted Random
Sampler with replacement has been used. M = 2Nn(n − 1)
graphs have been used to train and validate each epoch where,
N is the number of classes and n is the average number of
elements per class. Finally, for testing the approach, nearest
neighbours from the test set are selected in the training set to
measure the final system performance which is comparable to
classical approaches. The proposed approach has been run 5
times in order to know the effect of the random initialisation.

Retrieval: Graph retrieval extracts samples from a graph
dataset given a query graph. This problem is usually tackled by
computing a ranking of similarity measures between elements.
As a retrieval scenario, we evaluated our approach in keyword
spotting (KWS) problem. Similarly to the classification prob-
lem, pairs are selected in the training and validation sets.

C. Results and Discussion
In our evaluation we compare with classical graph edit

distance algorithms such as BP and HED.
The Letters dataset has been used in a graph classification

problem as a sanity-check of our proposed approach. This
simple dataset is also used to check that the model is able
to learn, and to test and to evaluate parameters in a controlled
scenario. Since it is a small dataset in terms of nodes,
almost the whole graph can be covered with a single jump,
and the learning may be redundant and noisy. The state of
the art on this dataset is almost 100% which which shows
the simplicity of it. Table II shows the accuracies obtained
using a 5-NN classifier as in [5]. MPNN directly performs
a classification using the readout function combined with a
Softmax and Cross-entropy loss. Siamese MPNN corresponds
to the performance with the model trained and tested using
the proposed distance. The performance of BP and HED was
also tested using the previous trained system.

TABLE II
RESULTS FOR THE LETTERS DATASET. MPNN APPROACHES PROVIDE

ACCURACY ± STANDARD DEVIATION FOR 5 RUNS.

LOW MED HIGH

BP [4] 99.73 94.27 89.87
HED [5] 97.87 86.93 79.2
Embedding4[26] 99.80 94.90 92.90

MPNN 95.04
±0.7224

83.20
±1.2189

72.27
±2.0060

Siamese MPNN 98.08
±0.1068

89.0136
±0.1808

74.77
±6.4505

Test BP 98.19
±0.1361

88.37
±0.41

79.65
±6.4345

Test HED 98.00
±0.1461

89.79
±0.3110

77.07
±5.6106

Firstly, we observe that a siamese MPNN is more stable
and obtains better accuracy than the classification through the
readout function on both subsets LOW and MED. Also, it
has better accuracy in the subset HIGH even though it is not
as stable as in the other subsets. A more elaborated distance
in test time BP or HED only improves in the HIGH subset.
We assume that the importance of the edges is emphasized
using our approach. Therefore, high distortions in the graphs
introduce a level of noise that cannot be dealt with our pro-
posed system. Compared to the state-of-the art, our approach
improves the HED which is the reference used to build our
distance. However, the use of a more elaborated distance such
as BP or an Embedding is clearly superior to our approach.

The Histograph dataset provides an insight on our approach
when dealing with bigger graphs, also in a classification
scenario. We observe that this is a rather small dataset, only
3 samples per class are seen at training time. However, our
approach can extract useful information able to improve the
accuracy using either embeddings or a graph edit distance
algorithm. Table III presents the results on two subsets and two
reference systems. For direct comparison with the BP results

presented in [23], we show the results using a 5-NN classifier
although our experiments show that it is better to use a smaller
k such as 3. This observation makes sense taking into account
that only 3 examples per class appear in the training set.

TABLE III
CLASSIFICATION ACCURACY FOR THE HISTOGRAPH DATASET.

Siamese MPNN

Subset BP [23] PSGE4[27] 3-NN 5-NN

Keypoint 77.62 80.42 85.31
± 1.6552

82.80
± 0.5600

Projection 81.82 80.42 73.15
± 2.6014

69.65
± 1.5064

We also observe that the Projection subset leads to worse
results than Keypoint. We assume that MPNN trusts a lot on
the structure, which is better represented on the Keypoint. The
query time required for classification is around 0.5s per query
in the Letters dataset (750 comparisons) and 3s per query in
Histograph using the Keypoints data (90 comparisons). Note
that the time increases a lot with the number of nodes.

Finally, the George Washington dataset has been used in a
retrieval scenario viz. Keyword Spotting. A retrieval problem
evaluates the capacity of our system to provide a ranking of
retrieved graphs. Word spotting is usually evaluated in terms
of the mean average precision (mAP) metric. Firstly, let us
define Average Precision (AP) as

AP =

∑|ret|
n=1 P@n× r(n)

|rel|
where P@n is the precision at n and r(n) is a binary function
on the relevance of the n-th item in the returned ranked list.
Taking the AP definition, the mAP is defined as

mAP =

∑Q
q=1 AP(q)

Q
,

where Q is the number of queries.
As this dataset is an extended version of Histograph, the

same training protocol has been used. Table IV shows a
comparison with other techniques. Special interest comes from
Mean Ensemble BP which is another graph-based technique.
Observe that our approach largely outperforms (more than
5 points) their performance thanks to the enriched graph
representation. As stated before, graph-based representations
are gaining popularity in word spotting thanks to their ability
to model the deformations present on handwritten words.
They offer complementary properties with respect to statistical
techniques. Moreover, some of the statistical methods shown
in the Table require the transcription of words to be trained.
Contrary, our approach only requires to know if the graphs
belong to the same class or not at training time. Moreover, we
are able to compute graph distances with out-of-vocabulary
words (i.e. words never seen at training).

4Makes use of an SVM classifier.
5Segmentation-free, query-by-string
6Learning-free

TABLE IV
MAP FROM DIFFERENT APPROACHES ON GW DATASET.

Method mAP

PHOC [28]5 64.00

BOF HMM [29]5 80.00

DTW6

DTW’01 [30] 42.26
DTW’08 [31] 63.39
DTW’09 [32] 64.80
DTW’16 [33] 68.64

Mean Ensemble BP [25]6 69.16

Siamese MPNN 75.85±3.64

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a siamese MPNN architec-
ture for computing graph distances. Our architecture is able to
learn node features based on structural information of nodes
local contexts. These learned features lead to an enriched
graph where we propose to compute a graph distance. We
have validated our proposed architecture on two application
scenarios: classification and retrieval in handwriting. We have
observed that our methodology emphasises the structure, so it
suffers from extreme distorted graphs in terms of their edges.
However, in a real application scenario, where the distortions
are more realistic, our methodology is able to deal with them.

Future work will be devoted to explore the possibility to
modify the graph similarity module to be capable to compute
a Graph Edit Distance approximation taking into account
insertions and deletions of nodes, and also, insertion, deletion
and substitution of edges. Moreover, it would be interesting
to allow the system to learn the cost functions. Also, virtual
edges will be studied to deal with very distorted structures.

ACKNOWLEDGMENT

Work supported by Spanish projects and fellowships:
TIN2015-70924-C2-2-R, RYC-2014-16831, FPU15/06264,
the CERCA Program/Generalitat de Catalunya and RecerCaixa
(XARXES, 2016ACUP-00008), a research program from Obra
Social ”La Caixa” with the collaboration of the ACUP. We
thank NVIDIA for the donation of a Titan Xp GPU.

REFERENCES

[1] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” IJPRAI, vol. 18, no. 3, pp. 265–298,
2004.

[2] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in ICML, 2017.

[3] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph edit distance,”
PAA, vol. 13, no. 1, pp. 113–129, 2010.

[4] K. Riesen and H. Bunke, “Approximate graph edit distance computation
by means of bipartite graph matching,” IVC, vol. 27, no. 7, pp. 950 –
959, 2009.

[5] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke, “Ap-
proximation of graph edit distance based on Hausdorff matching,” PR,
vol. 48, no. 2, pp. 331 – 343, 2015.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[7] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” CVPR, 2017.

[8] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a ”siamese” time delay neural network,” in NIPS,
1994, pp. 737–744.

[9] Z. Abu-Aisheh, B. Gazere, S. Bougleux, J.-Y. Ramel, L. Brun,
R. Raveaux, P. Héroux, and S. Adam, “Graph edit distance contest:
Results and future challenges,” PRL, vol. 100, pp. 96 – 103, 2017.

[10] A. Fischer, S. Uchida, V. Frinken, K. Riesen, and H. Bunke, “Improving
hausdorff edit distance using structural node context,” in GbRPR.
Springer, 2015, pp. 148–157.

[11] P. Wang, V. Eglin, C. Garcia, C. Largeron, J. Lladós, and A. Fornes, “A
novel learning-free word spotting approach based on graph representa-
tion,” DAS, pp. 207–211, 2014.

[12] P. Riba, J. Lladós, and A. Fornés, “Handwritten word spotting by inexact
matching of grapheme graphs,” in ICDAR, 2015, pp. 781–785.

[13] P. Riba, J. Lladós, A. Fornés, and A. Dutta, “Large-scale graph indexing
using binary embeddings of node contexts for information spotting in
document image databases,” PRL, vol. 87, pp. 203–211, 2017.

[14] M. Stauffer, A. Fischer, and K. Riesen, “Graph-based keyword spotting
in historical handwritten documents,” in S+SSPR, 2016, pp. 564–573.

[15] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE SPM,
vol. 34, no. 4, pp. 18–42, 2017.

[16] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in NIPS, 2015, pp. 2224–2232.

[17] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” ICLR, 2016.

[18] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE SPM, vol. 30, no. 3, pp. 83–98, 2013.

[19] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in NIPS, 2016,
pp. 3844–3852.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ICLR, 2017.

[21] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
in SSST, 2014.

[22] K. Riesen and H. Bunke, “Iam graph database repository for graph based
pattern recognition and machine learning,” in S+SSPR, 2008, pp. 287–
297.

[23] M. Stauffer, A. Fischer, and K. Riesen, “A novel graph database for
handwritten word images,” in S+SSPR, 2016, pp. 553–563.

[24] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “Lexicon-free hand-
written word spotting using character hmms,” PRL, vol. 33, no. 7, pp.
934–942, 2012.

[25] M. Stauffer, A. Fischer, and K. Riesen, “Ensembles for graph-based
keyword spotting in historical handwritten documents,” in ICDAR, 2017,
pp. 714–720.

[26] J. Gibert, E. Valveny, and H. Bunke, “Graph embedding in vector spaces
by node attribute statistics,” PR, vol. 45, no. 9, pp. 3072 – 3083, 2012.

[27] A. Dutta, P. Riba, J. Lladós, and A. Fornés, “Pyramidal stochastic
graphlet embedding for document pattern classification,” in ICDAR,
2017, pp. 33–38.

[28] S. K. Ghosh and E. Valveny, “Query by string word spotting based on
character bi-gram indexing,” in ICDAR. IEEE, 2015, pp. 881–885.

[29] L. Rothacker and G. A. Fink, “Segmentation-free query-by-string word
spotting with bag-of-features hmms,” in ICDAR, 2015, pp. 661–665.

[30] U.-V. Marti and H. Bunke, “Using a statistical language model to im-
prove the performance of an hmm-based cursive handwriting recognition
system,” IJPRAI, vol. 15, no. 01, pp. 65–90, 2001.

[31] J. A. Rodriguez and F. Perronnin, “Local gradient histogram features for
word spotting in unconstrained handwritten documents,” ICFHR, pp. 7–
12, 2008.

[32] K. Terasawa and Y. Tanaka, “Slit style hog feature for document image
word spotting,” in ICDAR, 2009, pp. 116–120.

[33] B. Wicht, A. Fischer, and J. Hennebert, “Deep learning features for
handwritten keyword spotting,” in ICPR, 2016, pp. 3434–3439.

