|
Records |
Links |
|
Author |
Marçal Rusiñol; Josep Llados; Gemma Sanchez |

|
|
Title  |
Symbol Spotting in Vectorized Technical Drawings Through a Lookup Table of Region Strings |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Analysis and Applications |
Abbreviated Journal |
PAA |
|
|
Volume |
13 |
Issue |
3 |
Pages |
321-331 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we address the problem of symbol spotting in technical document images applied to scanned and vectorized line drawings. Like any information spotting architecture, our approach has two components. First, symbols are decomposed in primitives which are compactly represented and second a primitive indexing structure aims to efficiently retrieve similar primitives. Primitives are encoded in terms of attributed strings representing closed regions. Similar strings are clustered in a lookup table so that the set median strings act as indexing keys. A voting scheme formulates hypothesis in certain locations of the line drawing image where there is a high presence of regions similar to the queried ones, and therefore, a high probability to find the queried graphical symbol. The proposed approach is illustrated in a framework consisting in spotting furniture symbols in architectural drawings. It has been proved to work even in the presence of noise and distortion introduced by the scanning and raster-to-vector processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-7541 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RLS2010 |
Serial |
1165 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez; Horst Bunke |

|
|
Title  |
Symbol-independent writer identification in old handwritten music scores |
Type |
Conference Article |
|
Year |
2009 |
Publication |
In proceedings of 8th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
186–197 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
La Rochelle, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FLS2009a |
Serial |
1222 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Mas |

|
|
Title  |
Syntactic approaches to recognize bi-dimensional shapes in graphics recognition. Application to sketching interfaces |
Type |
Report |
|
Year |
2005 |
Publication |
CVC Technical Report #86 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
CVC (UAB) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ Mas2005a |
Serial |
573 |
|
Permanent link to this record |
|
|
|
|
Author |
Gemma Sanchez; Josep Llados |

|
|
Title  |
Syntactic models to represent perceptually regular repetitive patterns in graphic documents |
Type |
Miscellaneous |
|
Year |
2003 |
Publication |
Proceedings of Fifth IAPR International Workshop on Graphics Recognition, 194–201 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Barcelona |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ SaL2003 |
Serial |
417 |
|
Permanent link to this record |
|
|
|
|
Author |
Gemma Sanchez; Josep Llados |

|
|
Title  |
Syntactic models to represent perceptually regular repetitive patterns in graphic documents |
Type |
Miscellaneous |
|
Year |
2004 |
Publication |
Graphics Recognition: Recent Advances and Perspectives, Lecture Notes in Computer Science, J. Llados, Y.B. Kwon (Eds.), 3088:162–171 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Springer-Verlag |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ SaL2004 |
Serial |
462 |
|
Permanent link to this record |
|
|
|
|
Author |
David Aldavert; Marçal Rusiñol |


|
|
Title  |
Synthetically generated semantic codebook for Bag-of-Visual-Words based word spotting |
Type |
Conference Article |
|
Year |
2018 |
Publication |
13th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
223 - 228 |
|
|
Keywords |
Word Spotting; Bag of Visual Words; Synthetic Codebook; Semantic Information |
|
|
Abstract |
Word-spotting methods based on the Bag-ofVisual-Words framework have demonstrated a good retrieval performance even when used in a completely unsupervised manner. Although unsupervised approaches are suitable for
large document collections due to the cost of acquiring labeled data, these methods also present some drawbacks. For instance, having to train a suitable “codebook” for a certain dataset has a high computational cost. Therefore, in
this paper we present a database agnostic codebook which is trained from synthetic data. The aim of the proposed approach is to generate a codebook where the only information required is the type of script used in the document. The use of synthetic data also allows to easily incorporate semantic
information in the codebook generation. So, the proposed method is able to determine which set of codewords have a semantic representation of the descriptor feature space. Experimental results show that the resulting codebook attains a state-of-the-art performance while having a more compact representation. |
|
|
Address |
Viena; Austria; April 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.084; 600.129; 600.121;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ AlR2018b |
Serial |
3105 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Lutz Goldmann; Oriol Ramos Terrades; Diede Rusticus; Alicia Fornes; Josep Llados |

|
|
Title  |
Table detection in business document images by message passing networks |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
127 |
Issue |
|
Pages |
108641 |
|
|
Keywords |
|
|
|
Abstract |
Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches. |
|
|
Address |
July 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.162; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RGR2022 |
Serial |
3729 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Anjan Dutta; Lutz Goldmann; Alicia Fornes; Oriol Ramos Terrades; Josep Llados |


|
|
Title  |
Table Detection in Invoice Documents by Graph Neural Networks |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
122-127 |
|
|
Keywords |
|
|
|
Abstract |
Tabular structures in documents offer a complementary dimension to the raw textual data, representing logical or quantitative relationships among pieces of information. In digital mail room applications, where a large amount of
administrative documents must be processed with reasonable accuracy, the detection and interpretation of tables is crucial. Table recognition has gained interest in document image analysis, in particular in unconstrained formats (absence of rule lines, unknown information of rows and columns). In this work, we propose a graph-based approach for detecting tables in document images. Instead of using the raw content (recognized text), we make use of the location, context and content type, thus it is purely a structure perception approach, not dependent on the language and the quality of the text
reading. Our framework makes use of Graph Neural Networks (GNNs) in order to describe the local repetitive structural information of tables in invoice documents. Our proposed model has been experimentally validated in two invoice datasets and achieved encouraging results. Additionally, due to the scarcity
of benchmark datasets for this task, we have contributed to the community a novel dataset derived from the RVL-CDIP invoice data. It will be publicly released to facilitate future research. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.140; 601.302; 602.167; 600.121; 600.141 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RDG2019 |
Serial |
3355 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |


|
|
Title  |
Text line extraction in graphical documents using background and foreground |
Type |
Journal Article |
|
Year |
2012 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
15 |
Issue |
3 |
Pages |
227-241 |
|
|
Keywords |
|
|
|
Abstract |
0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RPL2012b |
Serial |
2134 |
|
Permanent link to this record |
|
|
|
|
Author |
Klara Janousckova; Jiri Matas; Lluis Gomez; Dimosthenis Karatzas |


|
|
Title  |
Text Recognition – Real World Data and Where to Find Them |
Type |
Conference Article |
|
Year |
2020 |
Publication |
25th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
4489-4496 |
|
|
Keywords |
|
|
|
Abstract |
We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya. |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ JMG2020 |
Serial |
3557 |
|
Permanent link to this record |