|
Records |
Links |
|
Author |
Ariel Amato; Angel Sappa; Alicia Fornes; Felipe Lumbreras; Josep Llados |


|
|
Title |
Divide and Conquer: Atomizing and Parallelizing A Task in A Mobile Crowdsourcing Platform |
Type |
Conference Article |
|
Year |
2013 |
Publication  |
2nd International ACM Workshop on Crowdsourcing for Multimedia |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
21-22 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present some conclusions about the advantages of having an efficient task formulation when a crowdsourcing platform is used. In particular we show how the task atomization and distribution can help to obtain results in an efficient way. Our proposal is based on a recursive splitting of the original task into a set of smaller and simpler tasks. As a result both more accurate and faster solutions are obtained. Our evaluation is performed on a set of ancient documents that need to be digitized. |
|
|
Address |
Barcelona; October 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4503-2396-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CrowdMM |
|
|
Notes |
ADAS; ISE; DAG; 600.054; 600.055; 600.045; 600.061; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SLA2013 |
Serial |
2335 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Josep Llados |

|
|
Title |
Multi-Oriented Character Recognition from Graphical Documents |
Type |
Conference Article |
|
Year |
2008 |
Publication  |
2nd International Conference on Cognition and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
30–35 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Mandya (India) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RLP2008 |
Serial |
965 |
|
Permanent link to this record |
|
|
|
|
Author |
David Fernandez; Simone Marinai; Josep Llados; Alicia Fornes |


|
|
Title |
Contextual Word Spotting in Historical Manuscripts using Markov Logic Networks |
Type |
Conference Article |
|
Year |
2013 |
Publication  |
2nd International Workshop on Historical Document Imaging and Processing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
36-43 |
|
|
Keywords |
|
|
|
Abstract |
Natural languages can often be modelled by suitable grammars whose knowledge can improve the word spotting results. The implicit contextual information is even more useful when dealing with information that is intrinsically described as one collection of records. In this paper, we present one approach to word spotting which uses the contextual information of records to improve the results. The method relies on Markov Logic Networks to probabilistically model the relational organization of handwritten records. The performance has been evaluated on the Barcelona Marriages Dataset that contains structured handwritten records that summarize marriage information. |
|
|
Address |
washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4503-2115-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
HIP |
|
|
Notes |
DAG; 600.056; 600.045; 600.061; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FML2013 |
Serial |
2308 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Andreas Fischer; Carlos David Martinez Hinarejos |


|
|
Title |
Handwriting Recognition in Historical Documents using Very Large Vocabularies |
Type |
Conference Article |
|
Year |
2013 |
Publication  |
2nd International Workshop on Historical Document Imaging and Processing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67-72 |
|
|
Keywords |
|
|
|
Abstract |
Language models are used in automatic transcription system to resolve ambiguities. This is done by limiting the vocabulary of words that can be recognized as well as estimating the n-gram probability of the words in the given text. In the context of historical documents, a non-unified spelling and the limited amount of written text pose a substantial problem for the selection of the recognizable vocabulary as well as the computation of the word probabilities. In this paper we propose for the transcription of historical Spanish text to keep the corpus for the n-gram limited to a sample of the target text, but expand the vocabulary with words gathered from external resources. We analyze the performance of such a transcription system with different sizes of external vocabularies and demonstrate the applicability and the significant increase in recognition accuracy of using up to 300 thousand external words. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4503-2115-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
HIP |
|
|
Notes |
DAG; 600.056; 600.045; 600.061; 602.006; 602.101 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FFM2013 |
Serial |
2296 |
|
Permanent link to this record |
|
|
|
|
Author |
Manuel Carbonell; Joan Mas; Mauricio Villegas; Alicia Fornes; Josep Llados |


|
|
Title |
End-to-End Handwritten Text Detection and Transcription in Full Pages |
Type |
Conference Article |
|
Year |
2019 |
Publication  |
2nd International Workshop on Machine Learning |
Abbreviated Journal |
|
|
|
Volume |
5 |
Issue |
|
Pages |
29-34 |
|
|
Keywords |
Handwritten Text Recognition; Layout Analysis; Text segmentation; Deep Neural Networks; Multi-task learning |
|
|
Abstract |
When transcribing handwritten document images, inaccuracies in the text segmentation step often cause errors in the subsequent transcription step. For this reason, some recent methods propose to perform the recognition at paragraph level. But still, errors in the segmentation of paragraphs can affect
the transcription performance. In this work, we propose an end-to-end framework to transcribe full pages. The joint text detection and transcription allows to remove the layout analysis requirement at test time. The experimental results show that our approach can achieve comparable results to models that assume
segmented paragraphs, and suggest that joining the two tasks brings an improvement over doing the two tasks separately. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR WML |
|
|
Notes |
DAG; 600.140; 601.311; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CMV2019 |
Serial |
3353 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas |


|
|
Title |
Self‐supervised learning of visual features through embedding images into text topic spaces |
Type |
Conference Article |
|
Year |
2017 |
Publication  |
30th IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches. |
|
|
Address |
Honolulu; Hawaii; July 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPR2017 |
Serial |
2889 |
|
Permanent link to this record |
|
|
|
|
Author |
Fernando Vilariño; Dimosthenis Karatzas; Alberto Valcarce |

|
|
Title |
Libraries as New Innovation Hubs: The Library Living Lab |
Type |
Conference Article |
|
Year |
2018 |
Publication  |
30th ISPIM Innovation Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Libraries are in deep transformation both in EU and around the world, and they are thriving within a great window of opportunity for innovation. In this paper, we show how the Library Living Lab in Barcelona participated of this changing scenario and contributed to create the Bibliolab program, where more than 200 public libraries give voice to their users in a global user-centric innovation initiative, using technology as enabling factor. The Library Living Lab is a real 4-helix implementation where Universities, Research Centers, Public Administration, Companies and the Neighbors are joint together to explore how technology transforms the cultural experience of people. This case is an example of scalability and provides reference tools for policy making, sustainability, user engage methodologies and governance. We provide specific examples of new prototypes and services that help to understand how to redefine the role of the Library as a real hub for social innovation. |
|
|
Address |
Stockholm; May 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISPIM |
|
|
Notes |
DAG; MV; 600.097; 600.121; 600.129;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ VKV2018b |
Serial |
3154 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Zeynep Akata |


|
|
Title |
Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval |
Type |
Conference Article |
|
Year |
2019 |
Publication  |
32nd IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
5089-5098 |
|
|
Keywords |
|
|
|
Abstract |
Zero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators' outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets. |
|
|
Address |
Long beach; California; USA; June 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.141; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DuA2019 |
Serial |
3268 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas |


|
|
Title |
Good News, Everyone! Context driven entity-aware captioning for news images |
Type |
Conference Article |
|
Year |
2019 |
Publication  |
32nd IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
12458-12467 |
|
|
Keywords |
|
|
|
Abstract |
Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce“ GoodNews”, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results. |
|
|
Address |
Long beach; California; USA; june 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.129; 600.135; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGR2019 |
Serial |
3289 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Dimosthenis Karatzas; Ricardo Toledo; Josep Llados |


|
|
Title |
Interactive Trademark Image Retrieval by Fusing Semantic and Visual Content. Advances in Information Retrieval |
Type |
Conference Article |
|
Year |
2011 |
Publication  |
33rd European Conference on Information Retrieval |
Abbreviated Journal |
|
|
|
Volume |
6611 |
Issue |
|
Pages |
314-325 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an efficient queried-by-example retrieval system which is able to retrieve trademark images by similarity from patent and trademark offices' digital libraries. Logo images are described by both their semantic content, by means of the Vienna codes, and their visual contents, by using shape and color as visual cues. The trademark descriptors are then indexed by a locality-sensitive hashing data structure aiming to perform approximate k-NN search in high dimensional spaces in sub-linear time. The resulting ranked lists are combined by using the Condorcet method and a relevance feedback step helps to iteratively revise the query and refine the obtained results. The experiments demonstrate the effectiveness and efficiency of this system on a realistic and large dataset. |
|
|
Address |
Dublin, Ireland |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
Berlin |
Editor |
P. Clough; C. Foley; C. Gurrin; G.J.F. Jones; W. Kraaij; H. Lee; V. Murdoch |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-20160-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECIR |
|
|
Notes |
DAG; RV;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAK2011 |
Serial |
1737 |
|
Permanent link to this record |