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Abstract

Zero-shot sketch-based image retrieval (SBIR) is an
emerging task in computer vision, allowing to retrieve nat-
ural images relevant to sketch queries that might not been
seen in the training phase. Existing works either require
aligned sketch-image pairs or inefficient memory fusion
layer for mapping the visual information to a semantic
space. In this work, we propose a semantically aligned
paired cycle-consistent generative (SEM-PCYC) model for
zero-shot SBIR, where each branch maps the visual infor-
mation to a common semantic space via an adversarial
training. Each of these branches maintains a cycle con-
sistency that only requires supervision at category levels,
and avoids the need of highly-priced aligned sketch-image
pairs. A classification criteria on the generators’ outputs
ensures the visual to semantic space mapping to be discrim-
inating. Furthermore, we propose to combine textual and
hierarchical side information via a feature selection auto-
encoder that selects discriminating side information within
a same end-to-end model. Our results demonstrate a signif-
icant boost in zero-shot SBIR performance over the state-of-
the-art on the challenging Sketchy and TU-Berlin datasets.

1. Introduction

Matching natural images with free-hand sketches, i.e.
sketch-based image retrieval (SBIR) [60, 58, 27, 33, 47, 43,
63, 7, 23] has received a lot of attention. Since sketches can
effectively express shape, pose and fine-grained details of
the target images, SBIR serves a favorable scenario com-
plementary to the conventional text-image cross-modal re-
trieval or the classical content based image retrieval proto-
col. This is also because in some situations it may be hard
to provide a textual description or a suitable image of the
desired query, whereas, an user can easily draw a sketch of
the desired object spontaneously on a touch screen.
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Figure 1. The proposed SEM-PCYC model learns to map visual
information from sketch and image to a semantic space through an
adversarial training based on the seen classes. During the testing
phase the learned mappings are used for generating embeddings
on the unseen classes for zero-shot SBIR.

As the visual information from all the classes gets ex-
plored by the system during training, with overlapping
training and test classes, existing SBIR methods perform
well [63]. Since in practice there is no guarantee that the
training data would include all possible queries, a more re-
alistic setting is zero-shot SBIR [43, 23] which combines
zero-shot learning (ZSL) [25, 54] and SBIR as a single task,
where the aim is an accurate class prediction and a compe-
tent retrieval performance. However, zero-shot SBIR is ex-
tremely challenging as it simultaneously deals with a signif-
icant domain gap, intra-class variability and limited knowl-
edge about the unseen classes.

One of the major shortcomings of the prior work on
ZS-SBIR is that sketch-image is retrieved after learning a
mapping from an input sketch to an output image using a
training set of labelled aligned pairs [23]. The supervision
of paired correspondence is to enhance the correlation of
multi-modal data (here, sketch-image) so that learning can
be guided by semantics. However, for many realistic sce-
narios, obtaining paired (aligned) training data is either un-
available or very expensive. Furthermore, often a joint rep-
resentation of two or more modalities is obtained by using a
memory fusion layer [43], such as, tensor fusion [19], bilin-
ear pooling [62] etc. These fusion layers are often expensive
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in terms of memory [62], and extracting useful information
from this high dimensional space could result in informa-
tion loss [61].

To alleviate these shortcomings, we propose a seman-
tically aligned paired cycle consistent generative (SEM-
PCYC) model for zero-shot SBIR task, where each branch
either maps sketch or image features to a common semantic
space via an adversarial training. These two branches deal-
ing with two different modalities (sketch and image) con-
stitute an essential component for solving SBIR task. The
cycle consistency constraint on each branch guarantees the
mapping of sketch or image modality to a common seman-
tic space and their translation back to the original modality,
which further avoids the necessity of aligned sketch-image
pairs. Imposing a classification loss on the semantically
aligned outputs from the sketch and image space enforces
the generated features in the semantic space to be discrim-
inative which is very crucial for effective zero-shot SBIR.
Furthermore, inspired by the previous works on label em-
bedding [3], we propose to combine side information from
text-based and hierarchical models via a feature selection
auto-encoder [51] which selects discriminating side infor-
mation based on intra and inter class covariance.

The main contributions of the paper are: (1) We propose
the SEM-PCYC model for zero-shot SBIR task, that maps
sketch and image features to a common semantic space with
the help of adversarial training. The cycle consistency con-
straint on each branch of the SEM-PCYC model facilitates
bypassing the requirement of aligned sketch image pairs.
(2) Within a same end-to-end framework, we combine dif-
ferent side information via a feature selection guided auto-
encoder which effectively choose side information that min-
imizes intra-class variance and maximizes inter-class vari-
ance. (3) We evaluate our model on two datasets (Sketchy
and TU-Berlin) with varying difficulties and sizes, and pro-
vide an experimental comparison with latest models avail-
able for the same task, which further shows that our pro-
posed model consistently improves the state-of-the-art re-
sults of zero-shot SBIR on both datasets.

2. Related Work

As our work belongs at the verge of sketch-based image
retrieval and zero-shot learning task, we briefly review the
relevant literature from both the fields.

Sketch Based Image Retrieval (SBIR). Attempts for solv-
ing SBIR task mostly focus on bridging the domain gap be-
tween sketch and image, which can roughly be grouped in
hand-crafted and cross-domain deep learning-based meth-
ods [27]. Hand-crafted methods mostly work by extract-
ing the edge map from natural image and then matching
them with sketch using a Bag-of-Words model on top of
some specifically designed SBIR features, viz., gradient

field HOG [20], histogram of oriented edges [40], learned
key shapes [41] etc. However, the difficulty of reducing
domain gap remained unresolved as it is extremely chal-
lenging to match edge maps with unaligned hand drawn
sketch. This domain shift issue is further addressed by
neural network models where domain transferable features
from sketch to image are learned in an end-to-end man-
ner. Majority of such models use variant of siamese net-
works [36, 42, 58, 46] that are suitable for cross-modal re-
trieval. These frameworks either use generic ranking losses,
viz., contrastive loss [9], triplet ranking loss [42] or more
sophisticated HOLEF based loss [47]) for the same. Fur-
ther to these discriminative losses, Pang et al. [33] intro-
duced a discriminative-generative hybrid model for pre-
serving all the domain invariant information useful for re-
ducing the domain gap between sketch and image. Alter-
natively, some other works focus on learning cross-modal
hash code for category level SBIR within an end-to-end
deep model [27, 63]. In contrast, we propose a paired cy-
cle consistent generative model where each branch either
maps sketch or image features to a common semantic space
via adversarial training, which we found to be effective for
reducing the domain gap between sketch and image.

Zero-Shot Learning (ZSL). Zero-shot learning in com-
puter vision refers to recognizing objects whose instances
are not seen during the training phase; a comprehensive and
detailed survey on ZSL is available in [54]. Early works on
ZSL [25, 21, 5, 4] make use of attributes within a two-stage
approach to infer the label of an image that belong to the
unseen classes. However, the recent works [15, 39, 3, 2, 24]
directly learn a mapping from image feature space to a
semantic space. Many other ZSL approaches learn non-
linear multi-modal embedding [45, 2, 53, 6, 64], where
most of the methods focus to learn a non-linear mapping
from the image space to the semantic space. Mapping
both image and semantic features into another common in-
termediate space is another direction that ZSL approaches
adapt [66, 16, 67, 1, 28]. Although, most of the deep neu-
ral network models in this domain are trained using a dis-
criminative loss function, a few generative models also ex-
ist [52, 55, 8] that are used as a data augmentation mecha-
nism. In ZSL, some form of side information is required,
so that the knowledge learned from seen classes gets trans-
ferred to unseen classes. One popular form of side infor-
mation is attributes [25] that, however, require costly ex-
pert annotation. Thus, there has been a large group of stud-
ies [29, 3, 53, 38, 37, 11] which utilize other auxiliary infor-
mation, such as, text-based [30] or hierarchical model [32]
for label embedding. In this work, we address zero-shot
cross-modal (sketch to image) retrieval, for that, motivated
by [3], we effectively combine different side information
within an end-to-end framework, and map visual informa-
tion to the semantic space through an adversarial training.
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Zero-Shot Sketch-based Image Retrieval (ZS-SBIR).
Shen et al. [43] first combined zero-shot learning and
sketch based image retrieval, and proposed a generative
cross-modal hashing scheme for solving the zero-shot SBIR
task, where they used a graph convolution network for
aligning the sketch and image in the semantic space. In-
spired by them, Yelamarthi et al. [23] proposed two similar
autoencoder-based generative models for zero-shot SBIR,
where they have used the aligned pairs of sketch and image
for learning the semantics between them. In contrast, we
propose a paired cycle-consistent generative model where
each branch maps the visual information from sketch or im-
age to a semantic space through an adversarial training with
a common discriminator. The cycle consistency constraint
on each branch allows supervision only at category level,
and avoids the need of aligned sketch-image pairs.

3. SEM-PCYC Model
In this work, we propose the semantically aligned paired

cycle consistent generative (SEM-PCYC) model for zero-
shot sketch-based image retrieval. The sketch and image
data from the seen categories are only used for training the
underlying model. Our SEM-PCYC model encodes and
matches the sketch and image categories that remain un-
seen during the training phase. The overall pipeline of our
end-to-end deep architecture is shown in Figure 2.

Let Ds = {Xs,Ys} be a collection of sketch and image
data from the seen categories Cs that contain sketch images
Xs = {xs

i}Ni=1 as well as natural images Ys = {ys
i }Ni=1

for training, where N is the total number of sketch and im-
age pairs that are not necessarily aligned. Without loss of
generality, it can be assumed that sketch and image hav-
ing the same index, say, i, share the same category label.
Let Ss = {ssi}Ni=1 be the set of side information useful
for transferring the supervised knowledge to the unseen
classes, which is an usual practice in ZSL methods. The
main aim of our model is to learn two deep functions Gsk(·)
and Gim(·) respectively for sketch and image for mapping
them to a common semantic space where the learned knowl-
edge can be applied to the unseen classes as well. Given
a set of sketch-image data Du = {Xu,Yu} from the un-
seen categories Cu for test, the proposed deep functions
Gsk : Rd → RM , Gim : Rd → RM (d is the dimen-
sion of the original data and M is the targeted dimension
of the common representation) map the sketch and natural
image to a common semantic space where the retrieval is
performed. Since the method considers SBIR in zero-shot
setting, it is evident that the seen and unseen categories re-
main exclusive, i.e. Cs ∩ Cu = ∅.

3.1. Paired Cycle Consistent Generative Model

For having the flexibility to handle sketch and image in-
dividually, i.e. even when they are not aligned sketch-image

pairs, during training Gsk and Gim, we propose a cycle con-
sistent generative model whose each branch is semantically
aligned with a common discriminator. The cycle consis-
tency constraint on each branch of the model ensures the
mapping of sketch or image modality to a common seman-
tic space, and their translation back to the original modality,
which only requires supervision at category level. Impos-
ing a classification loss on the output of Gsk and Gim allows
generating highly discriminative features.

Our main goal is to learn two mappings Gsk and Gim
that can respectively translate the unaligned sketch and nat-
ural image to a common semantic space. Zhu et al. [68]
pointed out about the existence of underlying intrinsic re-
lationship between modalities and domains, for example,
sketch or image of same object category have the same
semantic meaning, and possess that relationship. Even
though, we lack visual supervision as we do not have ac-
cess to aligned pairs, we can exploit semantic supervision
at category levels. We train a mapping Gsk : X→ S so that
ŝi = Gsk(xi), where si ∈ S is the corresponding side infor-
mation and is indistinguishable from ŝi via an adversarial
training that classifies ŝi different from si. The optimal Gsk
thereby translates the modality X into a modality Ŝ which
is identically distributed to S. Similarly, another function
Gim : Y → S can be trained via the same discriminator
such that ŝi = Gim(yi).

Adversarial Loss. As shown in Figure 2, for mapping
the sketch and image representation to a common seman-
tic space, we introduce four generators Gsk : X → S,
Gim : Y → S, Fsk : S → X and Fim : S → Y. In ad-
dition, we bring in three adversarial discriminators: Dse(·),
Dsk(·) and Dim(·), where Dse discriminates among origi-
nal side information {s}, sketch transformed to side infor-
mation {Gsk(x)} and image transformed to side informa-
tion {Gim(y)}; likewiseDsk discriminates between original
sketch representation {x} and side information transformed
to sketch representation {Fsk(s)}; in a similar way Dim dis-
tinguishes between {y} and {Fim(s)}. For the generators
Gsk, Gim and their common discriminator Dse, the objec-
tive is as follows:

Ladv(Gsk, Gim, Dse,x,y, s) = 2× E [logDse(s)] (1)
+ E [log(1−Dse(Gsk(x)))] + E [log(1−Dse(Gim(y)))]

where Gsk and Gim generate side information similar to the
ones in S while Dse distinguishes between the generated
and original side information. Here, Gsk and Gim minimize
the objective against an opponentDse that tries to maximize
it, i.e. minGsk,Gim maxDse Ladv(Gsk, Gim, Dse,x,y, s). In a
similar way, for the generator Fsk and its discriminator Dsk,
the objective is:

Ladv(Fsk, Dsk,x, s) = E [logDsk(x)]

+ E [log(1−Dsk(Fsk(s)))]
(2)
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Figure 2. The deep network structure of SEM-PCYC. The sketch (in light gray) and image cycle consistent networks (in light blue)
respectively map the sketch and image to the semantic space and then the original input space. An auto-encoder (light orange) combines
the semantic information based on text and hierarchical model, and produces a compressed semantic representation which acts as a true
example to the discriminator. During the test phase only the learned sketch (light gray region) and image (light blue region) encoders to
the semantic space are used for generating embeddings on the unseen classes for zero-shot SBIR. (best viewed in color)

Fsk minimizes the objective and its adversary Dsk intends
to maximize it, i.e. minFsk maxDsk Ladv(Fsk, Dsk,x, s).
Similarly, another adversarial loss is introduced for
the mapping Fim and its discriminator Dim, i.e.,
minFim maxDim Ladv(Fim, Dim,y, s).

Cycle Consistency Loss. The adversarial mechanism ef-
fectively reduces the domain or modality gap, however, it is
not guaranteed that an input xi and an output si are matched
well. To this end, we impose cycle consistency [68]. When
we map the feature of a sketch of an object to the corre-
sponding semantic space, and then further translate it back
from the semantic space to the sketch feature space, we
should reach back to the original sketch feature. This cycle
consistency loss also assists in learning mappings across do-
mains where paired or aligned examples are not available.
Specifically, if we have a functionGsk : X→ S and another
mapping Fsk : S→ X, then both Gsk and Fsk are reverse of
each other, and hence form a one-to-one correspondence or
bijective mapping.

Lcyc(Gsk, Fsk) = E [‖Fsk(Gsk(x))− x‖1]
+ E [‖Gsk(Fsk(s))− s‖1]

(3)

Similarly, a cycle consistency loss is imposed for the map-
pings Gim : Y → S and Fim : S → Y: Lcyc(Gim, Fim).
These consistent loss functions also behave as a regularizer
to the adversarial training to assure that the learned function
maps a specific input xi to a desired output si.

Classification Loss. On the other hand, adversarial train-
ing and cycle-consistency constraints do not explicitly en-
sure whether the generated features by the mappings Gsk
and Gim are class discriminative, i.e. a requirement for the
zero-shot sketch-based image retrieval task. We conjecture
that this issue can be alleviated by introducing a discrimina-
tive classifier pre-trained on the input data. At this end we
minimize a classification loss over the generated features.

Lcls(Gsk) = −E [logP (c|Gsk(x); θ)] (4)

where c is the category label of x. Similarly, a classification
loss Lcls(Gim) is also imposed on the generator Gim.

3.2. Selection of Side Information

Motivated by attribute selection for zero-shot learn-
ing [18], indicating that a subset of discriminative attributes
are more effective than the whole set of attributes for ZSL,
we incorporate a joint learning framework integrating an
auto-encoder to select side information. Let s ∈ Rk be the
side information with k as the original dimension. The loss
function is:

Laenc(f, g) = ‖s− g(f(s))‖2F + λ‖W1‖2,1 (5)

where f(s) = σ(W1s + b1), g(f(s)) = σ(W2f(s) + b2),
with W1 ∈ Rk×m, W2 ∈ Rm×k and b1, b2 respectively as
the weights and biases for the function f and g. Selecting
side information reduces the dimensionality of embeddings,
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which further improves retrieval time. Therefore, the train-
ing objective of our model:

L(Gsk, Gim, Fsk, Fim, Dse, Dsk, Dim, f, g,x,y, s)

= Ladv(Gsk, Gim, Dse,x,y, s) + Ladv(Fsk, Dsk,x, s) (6)
+ Ladv(Fim, Dim,y, s) + Lcyc(Gsk, Fsk) + Lcyc(Gim, Fim)

+ Lcls(Gsk) + Lcls(Gim) + Laenc(f, g)

For obtaining the initial side information, we combine a
text-based and a hierarchical model, which are complemen-
tary and robust [3]. Below, we provide a description of our
text-based and hierarchical models for side information.

Text-based Model. We use two different text-based side
information. (1) Word2Vec [31] is a two layered neural net-
work that are trained to reconstruct linguistic contexts of
words. During training, it takes a large corpus of text and
creates a vector space of several hundred dimensions, with
each unique word being assigned to a corresponding vector
in that space. The model can be trained with a hierarchical
softmax with either skip-gram or continuous bag-of-words
formulation for target prediction. (2) GloVe [35] considers
global word-word co-occurrence statistics that frequently
appear in a corpus. Intuitively, co-occurrence statistics en-
code important semantic information. The objective is to
learn word vectors such that their dot product equals to the
probability of their co-occurrence.

Hierarchical Model. Semantic similarity between words
can also be approximated by measuring their distance in a
large onthology such as WordNet1 of ≈ 100, 000 words in
English. One can measure similarity using techniques such
as path similarity and Jiang-Conrath [22]. For a set S of
nodes in a dictionary D, similarities between every class c
and all the other nodes in S determine the entries of the
class embedding vector [3]. S considers all the nodes on
the path from each node in D to its highest level ancestor.
The database of WordNet contains most of the classes of the
Sketchy [42] and Tu-Berlin [13] datasets. Few exceptions
are: jack-o-lantern which we replaced with lantern that ap-
pears higher in the hierarchy, similarly human skeleton with
skeleton, and octopus with octopods etc. |S| for Sketchy and
TU-Berlin datasets are respectively 354 and 664.

4. Experiments

Datasets. We experimentally validate our model on
two popular SBIR benchmarks: Sketchy [42] and TU-
Berlin [13], together with the extended images from [27].

The Sketchy Dataset [42] (Extended) is a large collec-
tion of sketch-photo pairs. The dataset consists of images
from 125 different classes, with 100 photos each. Sketch
images of the objects that appear in these 12, 500 images

1https://wordnet.princeton.edu

are collected via crowd sourcing, which resulted in 75, 471
sketches. This dataset also contains a fine grained corre-
spondence (aligned) between particular photos and sketches
as well as various data augmentations for deep learning
based methods. Liu et al. [27] extended the dataset by
adding 60, 502 photos yielding in total 73, 002 images. We
randomly pick 25 classes of sketches and images as the un-
seen test set for the zero-shot SBIR, and the data from re-
maining 100 seen classes are used for training.

The TU-Berlin Dataset [13] (Extended) contains 250 cat-
egories with a total of 20, 000 sketches extended by [27]
with natural images corresponding to the sketch classes
with a total size of 204, 489. 30 classes of sketches and
images are randomly chosen to respectively form the query
set and the retrieval gallery. The remaining 220 classes are
utilized for training. We follow Shen et al. [43] and select
classes with at least 400 images in the test set.

Implementation Details. We implemented the SEM-
PCYC model using PyTorch [34] deep learning toolbox2,
which is trainable on a single TITAN Xp graphics card.
We extract features from sketch and image from the VGG-
16 [44] network model pre-trained on ImageNet [10]
dataset (before the last pooling layer). Since in this work,
we deal with single object retrieval and an object usually
spans only on certain regions of a sketch or image, we apply
an attention mechanism inspired by Song et al. [47] without
the shortcut connection for extracting only the informative
regions from sketch and image. The attended 512-D rep-
resentation is obtained by a pooling operation guided by
the attention model and fully connected (fc) layer. This
entire model is fine tuned on our training set (100 classes
for Sketchy and 220 classes for TU-Berlin). Both the gen-
erators Gsk and Gim are built with a fc layer followed by
a ReLU non-linearity that accept 512-D vector and output
M -D representation, whereas, the generators Fsk and Fim
take M -D features and produce 512-D vector. Accordingly,
all discriminators are designed to take the output of respec-
tive generators and produce a single dimensional output.
The auto-encoder is designed by stacking two non-linear fc
layers respectively as encoder and decoder for obtaining a
compressed and encoded representation of dimension M .

While constructing the hierarchy for acquiring the class
embedding, we only consider the seen classes belong to that
dataset. In this way, the WordNet hierarchy or the knowl-
edge graph for the Sketchy and TU-Berlin datasets respec-
tively contain 354 and 664 nodes. Although our method
does not produce binary hash code as a final representation
for matching sketch and image, for the sake of comparison
with some related works, such as, ZSH [56], ZSIH [43],
GDH [63], that produce hash codes, we have used the iter-
ative quantization (ITQ) [17] algorithm to obtain the binary

2Our code and trained models are available at: https://github.
com/AnjanDutta/sem-pcyc
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Sketchy (Extended) TU-Berlin (Extended)
Method mAP Precision Feature Retrieval mAP Precision Feature Retrieval

@all @100 Dimension Time (s) @all @100 Dimension Time (s)

SBIR

Softmax Baseline 0.114 0.172 4096 3.5× 10−1 0.089 0.143 4096 4.3× 10−1

Siamese CNN [36] 0.132 0.175 64 5.7× 10−3 0.109 0.141 64 5.9× 10−3

SaN [59] 0.115 0.125 512 4.8× 10−2 0.089 0.108 512 5.5× 10−2

GN Triplet [42] 0.204 0.296 1024 9.1× 10−2 0.175 0.253 1024 1.9× 10−1

3D Shape [50] 0.067 0.078 64 7.8× 10−3 0.054 0.067 64 7.2× 10−3

DSH (binary) [27] 0.171 0.231 64 6.1× 10−5 0.129 0.189 64 7.2× 10−5

GDH (binary) [63] 0.187 0.259 64 7.8× 10−5 0.135 0.212 64 9.6× 10−5

ZSL

CMT [45] 0.087 0.102 300 2.8× 10−2 0.062 0.078 300 3.3× 10−2

DeViSE [15] 0.067 0.077 300 3.6× 10−2 0.059 0.071 300 3.2× 10−2

SSE [65] 0.116 0.161 100 1.3× 10−2 0.089 0.121 220 1.7× 10−2

JLSE [67] 0.131 0.185 100 1.5× 10−2 0.109 0.155 220 1.4× 10−2

SAE [24] 0.216 0.293 300 2.9× 10−2 0.167 0.221 300 3.2× 10−2

FRWGAN [14] 0.127 0.169 512 3.2× 10−2 0.110 0.157 512 3.9× 10−2

ZSH (binary) [57] 0.159 0.214 64 5.9× 10−5 0.141 0.177 64 7.6× 10−5

Zero-Shot SBIR
ZSIH (binary) [43] 0.258 0.342 64 6.7× 10−5 0.223 0.294 64 7.7× 10−5

ZS-SBIR [23] 0.196 0.284 1024 9.6× 10−2 0.005 0.001 1024 1.2× 10−1

SEM-PCYC 0.349 0.463 64 1.7× 10−3 0.297 0.426 64 1.9× 10−3

SEM-PCYC (binary) 0.344 0.399 64 9.5× 10−5 0.293 0.392 64 9.3× 10−4

Generalized
Zero-Shot SBIR

ZSIH (binary) [43] 0.219 0.296 64 6.7× 10−5 0.142 0.218 64 7.7× 10−5

SEM-PCYC 0.307 0.364 64 1.7× 10−3 0.192 0.298 64 2.0× 10−3

SEM-PCYC (binary) 0.260 0.317 64 9.4× 10−5 0.174 0.267 64 9.3× 10−4

Table 1. Zero-shot sketch-based image retrieval performance comparison with existing SBIR, ZSL, zero-shot SBIR and generalized zero-
shot SBIR methods. Note: SBIR and ZSL methods are adapted to the Zero-Shot SBIR task, same seen and unseen classes are used for a
fair comparison.

swan duck owl penguin standing bird

Figure 3. Inter-class similarity in TU-Berlin dataset.

codes for sketch and image. We have used final represen-
tation of sketches and images from the train set to learn the
optimized rotation which later used on our final representa-
tion for obtaining the binary codes.

4.1. Comparing with the State-of-the-Art

Apart from the two prior Zero-Shot SBIR works closest
to ours, i.e. ZSIH [43] and ZS-SBIR [23], we adopt four-
teen ZSL and SBIR models to the zero-shot SBIR task.
The SBIR methods that we evaluate are SaN [60], 3D
Shape [49], Siamese CNN [36], GN Triplet [42], DSH [27]
and GDH [63]. A softmax baseline is also added, which
is based on computing the 4096-D VGG-16 [44] feature
vector pre-trained on the seen classes for nearest neighbour
search. The ZSL methods that we evaluate are: CMT [45],
DeViSE [15], SSE [66], JLSE [67], ZSH [56], SAE [24]
and FRWGAN [14]. We use the same seen-unseen splits
of categories for all the experiments for a fair comparison.
We compute the mean average precision (mAP@all) and
precision considering top 100 (Precision@100) [48, 43] re-
trievals for the performance evaluation and comparison.

Table 1 shows that most of the SBIR and ZSL methods
perform worse than the zero-shot SBIR methods. Among
them, the ZSL methods usually suffer from the domain

gap that exist between the sketch and image modalities
while SAE [24] reaches the best performance. The ma-
jority SBIR methods although have performed better than
their ZSL counterparts, sustain the incapacity to general-
ize the learned representations to unseen classes. However,
GN Triplet [42], DSH [27], GDH [63] have shown reason-
able potential to generalize information only from object
with common shape. As per the expectation, the special-
ized zero-shot SBIR methods have surpassed most of the
ZSL and SBIR baselines as they possess both the ability of
reducing the domain gap and generalizing the learned infor-
mation for the unseen classes. ZS-SBIR learns to generalize
between sketch and image from the aligned sketch-image
pairs, as a result it performs well on the Sketchy dataset, but
not on the TU-Berlin dataset, as in this case, aligned sketch-
image pairs are not available. Our proposed method has
consistently excelled the state-of-the-art method by 0.091
mAP@all on the Sketchy dataset and 0.074 mAP@all on
the TU-Berlin dataset, which shows the effectiveness of
our proposed SEM-PCYC model which gets benefited from
(1) cycle consistency between sketch, image and semantic
space, (2) compact and selected side information. In gen-
eral, all the methods considered in Table 1 have performed
worse on the TU-Berlin dataset, which might be due to the
large number of classes, where many of them are visually
similar and overlapping. These results are encouraging in
that they show that the cycle consistency helps zero-shot
SBIR task and our model sets the new state-of-the-art in
this domain. The PR-curves of SEM-PCYC and considered
baselines on Sketchy and TU-Berlin are respectively shown
in Figure 5(a)-(b). We also conducted additional experi-
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Figure 4. Top-10 zero-shot SBIR results obtained by our SEM-
PCYC model on Sketchy (top four rows) and TU-Berlin (next four
rows) are shown here according to the Euclidean distances, where
the green ticks denote correctly retrieved candidates and the red
crosses indicate wrong retrievals. (best viewed in color)

ments on generalized ZS-SBIR setting where search space
contains seen and unseen classes. This task is significantly
more challenging than ZS-SBIR as seen classes create dis-
traction to the test queries. Our results in Table 1 (last two
lines) show that our model significantly outperforms [43],
due to the benefit of our cross-modal adversarial mechanism
and heterogeneous side information.

Qualitative Results. Next, we analyze the retrieval per-
formance of our proposed model qualitatively in Figure 4
(more qualitative results are available in [12]). Some no-
table examples are as follows. Sketch query of tank re-
trieves some examples of motorcycle probably because
both of them have wheels in common. For having vi-
sual and semantic similarity, sketching guitar retrieves
some violins. Querying castle, retrieves images hav-
ing large portion of sky, because the images of its semanti-
cally similar classes, such as, skyscraper, church, are
mostly captured with sky in background. In general, we ob-
serve that the wrongly retrieved candidates mostly have a
closer visual and semantic relevance with the queried ones.
This effect is more prominent in TU-Berlin dataset, which
may be due to the inter-class similarity of sketches between
different classes. As shown in Figure 3, the classes swan,
duck and owl, penguin have substantial visual similar-

Text Embedding Hierarchical Embedding Sketchy TU-Berlin
Glove Word2Vec Path Lin [26] Ji-Cn [22] (Extended) (Extended)
X 0.284 0.228

X 0.330 0.232
X 0.314 0.224

X 0.248 0.169
X 0.308 0.227

X X 0.338 0.276
X X 0.299 0.253
X X 0.285 0.243

X X 0.340 0.297
X X 0.288 0.264
X X 0.349 0.291

Table 2. Zero-shot SBIR mAP@all using different semantic em-
beddings (top) and their combinations (bottom).

ity, and all of them are standing bird which is a sep-
arate class of the same dataset. Therefore, for TU-Berlin
dataset, it is challenging to generalize the unseen classes
from the learned representation of seen classes.

4.2. Effect of Side-Information

In zero-shot learning, side information is as important as
the visual information as it is the only means the model can
discover similarities between classes. As the type of side in-
formation has a high effect in performance of any method,
we analyze the effect of side-information and present zero-
shot SBIR results by considering different side informa-
tion and their combinations. We compare the effect of us-
ing GloVe [35] and Word2Vec [30] as text-based model,
and three similarity measurements, i.e. path, Lin [26] and
Jiang-Conrath [22] for constructing three different side in-
formation that are based on WordNet hierarchy. Table 2
contains the quantitative results on both Sketchy and TU-
Berlin datasets with different side information mentioned
and their combinations, where we set M = 64 (results with
M = 32, 128 can be found in [12]). We have observed that
in majority of cases combining different side information
increases the performance by 1% to 3%.

On Sketchy, the combination of Word2vec and Jiang-
Conrath hierarchical similarity reaches the highest mAP
of 0.349 while on TU Berlin dataset, the combination of
Word2Vec and path similarity leads with 0.297 mAP. We
conclude from these experiments that indeed text-based and
hierarchy-based class embeddings are complementary. Fur-
thermore, Word2Vec captures semantic similarity between
words better than GloVe for the task of zero-shot SBIR.

4.3. Model Ablations

The baselines of our ablation study are built by mod-
ifying some parts of the SEM-PCYC model and analyze
the effect of different losses of our model. First, we train
the model only with adversarial loss, and then alternatively
add cycle consistency and classification loss for the train-
ing. Second, we train the model without the side informa-
tion selection mechanism, for that, we only take the original
text or hierarchical embedding or their combination as side
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Figure 5. (a)-(b) PR curves of SEM-PCYC model and several
SBIR, ZSL and zero-shot SBIR methods respectively on the
Sketchy and TU-Berlin datasets, (c) Plot showing mAP@all wrt
the ratio of removed side information. (best viewed in color)

Description Sketchy TU-Berlin
Only adversarial loss 0.128 0.109
Adversarial + cycle consistency loss 0.147 0.131
Adversarial + classification loss 0.140 0.127
Without selecting side information 0.382 0.299
Without regularizer in eqn. (5) 0.323 0.273
SEM-PCYC (full model) 0.349 0.297

Table 3. Ablation study on our 64-D model mAP@all results of
several baselines are shown above.

information, which can give an idea on the advantage of
selecting side information via the auto-encoder. Next, we
experiment reducing the dimensionality of the class embed-
ding to a percentage of the full dimensionality. Finally, to
demonstrate the effectiveness of the regularizer used in the
auto-encoder for selecting discriminative side information,
we experiment by making λ = 0 in eqn. (5).

The mAP@all values obtained by respective baselines
mentioned above are shown in Table 3. We consider the
best side information setting according to Table 2 depend-
ing on the dataset. The assessed baselines have typically
underperform the full SEM-PCYC model. Only with adver-
sarial losses, the performance of our system drops signifi-
cantly. We suspect that only adversarial training although
maps sketch and image input to a semantic space, there
is no guarantee that sketch-image pairs of same category
are matched. This is because adversarial training only en-
sures the mapping of input modality to target modality that
matches its empirical distribution [68], but does not guar-
antee an individual input and output are paired up. Imposi-
tion of cycle-consistency constraint ensures the one-to-one
correspondence of sketch-image categories. However, the
performance of our system does not improve substantially
while the model is trained both with adversarial and cycle
consistency loss. We speculate that this issue could be due
to the lack of inter-category discriminating power of the
learned embedding functions; for that, we set a classifica-
tion criteria to train discriminating cross-modal embedding
functions. We further observe that only imposing classifica-
tion criteria together with adversarial loss, neither improves
the retrieval results. We conjecture that in this case the
learned embedding could be very discriminative but the two
modalities might be matched in wrong way. Hence, it can

be concluded that all these three losses are complimentary
to each other and absolutely essential for effective zero-shot
SBIR. Next, we analyze the effect of side information and
observe that without the encoded and compact side infor-
mation, we achieve better mAP@all with a compromise on
retrieval time, as the original dimension (354+300 = 654d
for Sketchy and 664 + 300 = 964d for TU-Berlin) of con-
sidered side information is much higher than the encoded
ones (64d). We further investigate by reducing its dimen-
sion as a percentage of the original one (see Figure 5(c)),
and we have observed that at the beginning, reducing a
small part (mostly 5% to 30%) usually leads to a better
performance, which reveals that not all the side informa-
tion are necessary for effective zero-shot SBIR and some of
them are even harmful. In fact, the first removed ones have
low information content, and can be regarded as noise. We
have also perceived that removing more side information
(beyond 20% to 40%) deteriorates the performance of the
system, which is quite justifiable because the compressing
mechanism of auto-encoder progressively removes impor-
tant and predictable side information. However, it can be
observed that with highly compressed side information as
well, our model provides a very good deal with performance
and retrieval time. Without using the regularizer in eqn.
(5), although our system performs reasonably, the mAP@all
value is still lower than the best obtained performance. We
explain this as a benefit of using `21-norm based regularizer
that effectively select representative side information.

5. Conclusion

We proposed the SEM-PCYC model for the zero-shot
SBIR task. Our SEM-PCYC is a semantically aligned
paired cycle consistent generative model whose each branch
either maps a sketch or an image to a common semantic
space via adversarial training with a shared discriminator.
Thanks to cycle consistency on both the branches our model
does not require aligned sketch-image pairs. Moreover, it
acts as a regularizer in the adversarial training. The clas-
sification losses on the generators guarantee the features to
be discriminative. We show that combining heterogeneous
side information through an auto-encoder, which encodes
a compact side information useful for adversarial training,
is effective. Our evaluation on two datasets has shown that
our model consistently outperforms the existing methods in
zero-shot SBIR task.
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