|
Records |
Links |
|
Author |
David Fernandez; Jon Almazan; Nuria Cirera; Alicia Fornes; Josep Llados |


|
|
Title |
BH2M: the Barcelona Historical Handwritten Marriages database |
Type |
Conference Article |
|
Year |
2014 |
Publication  |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
256 - 261 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents an image database of historical handwritten marriages records stored in the archives of Barcelona cathedral, and the corresponding meta-data addressed to evaluate the performance of document analysis algorithms. The contribution of this paper is twofold. First, it presents a complete ground truth which covers the whole pipeline of handwriting
recognition research, from layout analysis to recognition and understanding. Second, it is the first dataset in the emerging area of genealogical document analysis, where documents are manuscripts pseudo-structured with specific lexicons and the interest is beyond pure transcriptions but context dependent. |
|
|
Address |
Creete Island; Grecia; September 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.056; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FAC2014 |
Serial |
2461 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |


|
|
Title |
MSER-based Real-Time Text Detection and Tracking |
Type |
Conference Article |
|
Year |
2014 |
Publication  |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
3110 - 3115 |
|
|
Keywords |
|
|
|
Abstract |
We present a hybrid algorithm for detection and tracking of text in natural scenes that goes beyond the fulldetection approaches in terms of time performance optimization.
A state-of-the-art scene text detection module based on Maximally Stable Extremal Regions (MSER) is used to detect text asynchronously, while on a separate thread detected text objects are tracked by MSER propagation. The cooperation of these two modules yields real time video processing at high frame rates even on low-resource devices. |
|
|
Address |
Stockholm; August 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.056; 601.158; 601.197; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2014a |
Serial |
2492 |
|
Permanent link to this record |
|
|
|
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados |


|
|
Title |
Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions |
Type |
Conference Article |
|
Year |
2014 |
Publication  |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2903 - 2908 |
|
|
Keywords |
|
|
|
Abstract |
Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods. |
|
|
Address |
Stockholm; Sweden; August 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.056; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2014b |
Serial |
2497 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes |


|
|
Title |
A Coarse-to-Fine Word Spotting Approach for Historical Handwritten Documents Based on Graph Embedding and Graph Edit Distance |
Type |
Conference Article |
|
Year |
2014 |
Publication  |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
3074 - 3079 |
|
|
Keywords |
word spotting; coarse-to-fine mechamism; graphbased representation; graph embedding; graph edit distance |
|
|
Abstract |
Effective information retrieval on handwritten document images has always been a challenging task, especially historical ones. In the paper, we propose a coarse-to-fine handwritten word spotting approach based on graph representation. The presented model comprises both the topological and morphological signatures of the handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. Aiming at developing a practical and efficient word spotting approach for large-scale historical handwritten documents, a fast and coarse comparison is first applied to prune the regions that are not similar to the query based on the graph embedding methodology. Afterwards, the query and regions of interest are compared by graph edit distance based on the Dynamic Time Warping alignment. The proposed approach is evaluated on a public dataset containing 50 pages of historical marriage license records. The results show that the proposed approach achieves a compromise between efficiency and accuracy. |
|
|
Address |
Stockholm; Sweden; August 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEG2014a |
Serial |
2515 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Cruz; Oriol Ramos Terrades |


|
|
Title |
EM-Based Layout Analysis Method for Structured Documents |
Type |
Conference Article |
|
Year |
2014 |
Publication  |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
315-320 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according
to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 602.006; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CrR2014 |
Serial |
2530 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |


|
|
Title |
Efficient Exemplar Word Spotting |
Type |
Conference Article |
|
Year |
2012 |
Publication  |
23rd British Machine Vision Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67.1- 67.11 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
1-901725-46-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
BMVC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AGF2012 |
Serial |
1984 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Umapada Pal; Josep Llados |

|
|
Title |
Compact Correlated Features for Writer Independent Signature Verification |
Type |
Conference Article |
|
Year |
2016 |
Publication  |
23rd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper considers the offline signature verification problem which is considered to be an important research line in the field of pattern recognition. In this work we propose hybrid features that consider the local features and their global statistics in the signature image. This has been done by creating a vocabulary of histogram of oriented gradients (HOGs). We impose weights on these local features based on the height information of water reservoirs obtained from the signature. Spatial information between local features are thought to play a vital role in considering the geometry of the signatures which distinguishes the originals from the forged ones. Nevertheless, learning a condensed set of higher order neighbouring features based on visual words, e.g., doublets and triplets, continues to be a challenging problem as possible combinations of visual words grow exponentially. To avoid this explosion of size, we create a code of local pairwise features which are represented as joint descriptors. Local features are paired based on the edges of a graph representation built upon the Delaunay triangulation. We reveal the advantage of combining both type of visual codebooks (order one and pairwise) for signature verification task. This is validated through an encouraging result on two benchmark datasets viz. CEDAR and GPDS300. |
|
|
Address |
Cancun; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DPL2016 |
Serial |
2875 |
|
Permanent link to this record |
|
|
|
|
Author |
Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov |

|
|
Title |
Improving Text Proposals for Scene Images with Fully Convolutional Networks |
Type |
Conference Article |
|
Year |
2016 |
Publication  |
23rd International Conference on Pattern Recognition Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text
recognition. In this paper we propose an improvement over the original Text Proposals algorithm of [1], combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art. |
|
|
Address |
Cancun; Mexico; December 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPRW |
|
|
Notes |
DAG; LAMP; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGN2016 |
Serial |
2823 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anjan Dutta; Suman Ghosh; Ernest Valveny; Josep Llados; Umapada Pal |


|
|
Title |
Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch |
Type |
Conference Article |
|
Year |
2018 |
Publication  |
24th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
916 - 921 |
|
|
Keywords |
|
|
|
Abstract |
In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets. |
|
|
Address |
Beijing; China; August 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 602.167; 602.168; 600.097; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DDG2018b |
Serial |
3152 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Andreas Fischer; Josep Llados; Alicia Fornes |


|
|
Title |
Learning Graph Distances with Message Passing Neural Networks |
Type |
Conference Article |
|
Year |
2018 |
Publication  |
24th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2239-2244 |
|
|
Keywords |
★Best Paper Award★ |
|
|
Abstract |
Graph representations have been widely used in pattern recognition thanks to their powerful representation formalism and rich theoretical background. A number of error-tolerant graph matching algorithms such as graph edit distance have been proposed for computing a distance between two labelled graphs. However, they typically suffer from a high
computational complexity, which makes it difficult to apply
these matching algorithms in a real scenario. In this paper, we propose an efficient graph distance based on the emerging field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure and learns a metric with a siamese network approach. The performance of the proposed graph distance is validated in two application cases, graph classification and graph retrieval of handwritten words, and shows a promising performance when compared with
(approximate) graph edit distance benchmarks. |
|
|
Address |
Beijing; China; August 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.097; 603.057; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RFL2018 |
Serial |
3168 |
|
Permanent link to this record |