|
Records |
Links |
|
Author |
T.O. Nguyen; Salvatore Tabbone; Oriol Ramos Terrades; A.T. Thierry |

|
|
Title |
Proposition d'un descripteur de formes et du modèle vectoriel pour la recherche de symboles |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Colloque International Francophone sur l'Ecrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
79-84 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Rouen, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ NTR2008b |
Serial |
1875 |
|
Permanent link to this record |
|
|
|
|
Author |
Salvatore Tabbone; Oriol Ramos Terrades; S. Barrat |

|
|
Title |
Histogram of radon transform. A useful descriptor for shape retrieval |
Type |
Conference Article |
|
Year |
2008 |
Publication |
19th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-4 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Tampa, Florida |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TRB2008 |
Serial |
1876 |
|
Permanent link to this record |
|
|
|
|
Author |
L. Rothacker; Marçal Rusiñol; G.A. Fink |


|
|
Title |
Bag-of-Features HMMs for segmentation-free word spotting in handwritten documents |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1305 - 1309 |
|
|
Keywords |
|
|
|
Abstract |
Recent HMM-based approaches to handwritten word spotting require large amounts of learning samples and mostly rely on a prior segmentation of the document. We propose to use Bag-of-Features HMMs in a patch-based segmentation-free framework that are estimated by a single sample. Bag-of-Features HMMs use statistics of local image feature representatives. Therefore they can be considered as a variant of discrete HMMs allowing to model the observation of a number of features at a point in time. The discrete nature enables us to estimate a query model with only a single example of the query provided by the user. This makes our method very flexible with respect to the availability of training data. Furthermore, we are able to outperform state-of-the-art results on the George Washington dataset. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RRF2013 |
Serial |
2344 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Oriol Ramos Terrades; Joan Mas; Marçal Rusiñol |



|
|
Title |
Interactive Document Retrieval and Classification. |
Type |
Book Chapter |
|
Year |
2013 |
Publication |
Multimodal Interaction in Image and Video Applications |
Abbreviated Journal |
|
|
|
Volume |
48 |
Issue |
|
Pages |
17-30 |
|
|
Keywords |
|
|
|
Abstract |
In this chapter we describe a system for document retrieval and classification following the interactive-predictive framework. In particular, the system addresses two different scenarios of document analysis: document classification based on visual appearance and logo detection. These two classical problems of document analysis are formulated following the interactive-predictive model, taking the user interaction into account to make easier the process of annotating and labelling the documents. A system implementing this model in a real scenario is presented and analyzed. This system also takes advantage of active learning techniques to speed up the task of labelling the documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
Angel Sappa; Jordi Vitria |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1868-4394 |
ISBN |
978-3-642-35931-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ VRM2013 |
Serial |
2341 |
|
Permanent link to this record |
|
|
|
|
Author |
Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades |


|
|
Title |
New Approach for Symbol Recognition Combining Shape Context of Interest Points with Sparse Representation |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
265-269 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a new approach for symbol description. Our method is built based on the combination of shape context of interest points descriptor and sparse representation. More specifically, we first learn a dictionary describing shape context of interest point descriptors. Then, based on information retrieval techniques, we build a vector model for each symbol based on its sparse representation in a visual vocabulary whose visual words are columns in the learneddictionary. The retrieval task is performed by ranking symbols based on similarity between vector models. Evaluation of our method, using benchmark datasets, demonstrates the validity of our approach and shows that it outperforms related state-of-theart methods. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DTR2013b |
Serial |
2331 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |


|
|
Title |
Handwritten Word Spotting with Corrected Attributes |
Type |
Conference Article |
|
Year |
2013 |
Publication |
15th IEEE International Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1017-1024 |
|
|
Keywords |
|
|
|
Abstract |
We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results. |
|
|
Address |
Sydney; Australia; December 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-5499 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV |
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGF2013 |
Serial |
2327 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Cruz; Oriol Ramos Terrades |


|
|
Title |
Handwritten Line Detection via an EM Algorithm |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
718-722 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a handwritten line segmentation method devised to work on documents composed of several paragraphs with multiple line orientations. The method is based on a variation of the EM algorithm for the estimation of a set of regression lines between the connected components that compose the image. We evaluated our method on the ICDAR2009 handwriting segmentation contest dataset with promising results that overcome most of the presented methods. In addition, we prove the usability of the presented method by performing line segmentation on the George Washington database obtaining encouraging results. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ CrT2013 |
Serial |
2329 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Alicia Fornes; Ernest Valveny |


|
|
Title |
A Deformable HOG-based Shape Descriptor |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1022-1026 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ AFV2013 |
Serial |
2326 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez |

|
|
Title |
Perceptual Organization for Text Extraction in Natural Scenes |
Type |
Report |
|
Year |
2012 |
Publication |
CVC Technical Report |
Abbreviated Journal |
|
|
|
Volume |
173 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Bellaterra |
|
|
Corporate Author |
|
Thesis |
Master's thesis |
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Gom2012 |
Serial |
2309 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Alicia Fornes; Ernest Valveny |


|
|
Title |
Writer identification in handwritten musical scores with bags of notes |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
5 |
Pages |
1337-1345 |
|
|
Keywords |
|
|
|
Abstract |
Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GFV2013 |
Serial |
2307 |
|
Permanent link to this record |