toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Veronica Romero; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez edit   pdf
openurl 
  Title Using the MGGI Methodology for Category-based Language Modeling in Handwritten Marriage Licenses Books Type Conference Article
  Year 2016 Publication 15th international conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten marriage licenses books have been used for centuries by ecclesiastical and secular institutions to register marriages. The information contained in these historical documents is useful for demography studies and
genealogical research, among others. Despite the generally simple structure of the text in these documents, automatic transcription and semantic information extraction is difficult due to the distinct and evolutionary vocabulary, which is composed mainly of proper names that change along the time. In previous
works we studied the use of category-based language models to both improve the automatic transcription accuracy and make easier the extraction of semantic information. Here we analyze the main causes of the semantic errors observed in previous results and apply a Grammatical Inference technique known as MGGI to improve the semantic accuracy of the language model obtained. Using this language model, full handwritten text recognition experiments have been carried out, with results supporting the interest of the proposed approach.
 
  Address Shenzhen; China; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.097; 602.006 Approved no  
  Call Number Admin @ si @ RFV2016 Serial 2909  
Permanent link to this record
 

 
Author Hana Jarraya; Muhammad Muzzamil Luqman; Jean-Yves Ramel edit  doi
openurl 
  Title Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition Type Book Chapter
  Year 2017 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 9657 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor B. Lamiroy; R Dueire Lins  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JLR2017 Serial 2928  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
url  openurl
  Title Product graph-based higher order contextual similarities for inexact subgraph matching Type Journal Article
  Year 2018 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 76 Issue Pages 596-611  
  Keywords  
  Abstract Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes DAG; 602.167; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DLB2018 Serial 3083  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Sparse representation over learned dictionary for symbol recognition Type Journal Article
  Year 2016 Publication Signal Processing Abbreviated Journal SP  
  Volume 125 Issue Pages 36-47  
  Keywords Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points  
  Abstract In this paper we propose an original sparse vector model for symbol retrieval task. More speci cally, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ DTR2016 Serial 2946  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit   pdf
url  openurl
  Title Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs Type Conference Article
  Year 2017 Publication 8th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines  
  Abstract We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction.  
  Address Faro; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference IbPRIA  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017a Serial 2953  
Permanent link to this record
 

 
Author Lasse Martensson; Anders Hast; Alicia Fornes edit   pdf
isbn  openurl
  Title Word Spotting as a Tool for Scribal Attribution Type Conference Article
  Year 2017 Publication 2nd Conference of the association of Digital Humanities in the Nordic Countries Abbreviated Journal  
  Volume Issue Pages 87-89  
  Keywords  
  Abstract  
  Address Gothenburg; Suecia; March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-91-88348-83-8 Medium (up)  
  Area Expedition Conference DHN  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ MHF2017 Serial 2954  
Permanent link to this record
 

 
Author Pau Riba; Alicia Fornes; Josep Llados edit   pdf
url  isbn
openurl 
  Title Towards the Alignment of Handwritten Music Scores Type Book Chapter
  Year 2017 Publication International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 9657 Issue Pages 103-116  
  Keywords Optical Music Recognition; Handwritten Music Scores; Dynamic Time Warping alignment  
  Abstract It is very common to nd di erent versions of the same music work in archives of Opera Theaters. These di erences correspond to modi cations and annotations from the musicians. From the musicologist point of view, these variations are very interesting and deserve study.
This paper explores the alignment of music scores as a tool for automatically detecting the passages that contain such di erences. Given the diculties in the recognition of handwritten music scores, our goal is to align the music scores and at the same time, avoid the recognition of music elements as much as possible. After removing the sta lines, braces and ties, the bar lines are detected. Then, the bar units are described as a whole using the Blurred Shape Model. The bar units alignment is performed by using Dynamic Time Warping. The analysis of the alignment path is used to detect the variations in the music scores. The method has been evaluated on a subset of the CVC-MUSCIMA dataset, showing encouraging results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Bart Lamiroy; R Dueire Lins  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-52158-9 Medium (up)  
  Area Expedition Conference  
  Notes DAG; 600.097; 602.006; 600.121 Approved no  
  Call Number Admin @ si @ RFL2017 Serial 2955  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  openurl
  Title Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary Type Book Chapter
  Year 2016 Publication Recent Trends in Image Processing and Pattern Recognition Abbreviated Journal  
  Volume 709 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference RTIP2R  
  Notes DAG Approved no  
  Call Number Admin @ si @ HTR2016 Serial 2956  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell edit   pdf
url  openurl
  Title Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging Abbreviated Journal  
  Volume 10550 Issue Pages 151-159  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address Quebec; Canada; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference CLIP  
  Notes IAM; 600.096; 600.075; 600.145;DAG Approved no  
  Call Number Admin @ si @ GRM2017 Serial 2957  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit  doi
openurl 
  Title Learning structural loss parameters on graph embedding applied on symbolic graphs Type Conference Article
  Year 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017b Serial 3073  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: