|
Records |
Links |
|
Author |
Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez |
![goto web page (via DOI) doi](http://refbase.cvc.uab.es/img/doi.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
8746 |
Issue |
|
Pages |
109-121 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Graphics recognition; Floor plan analysis; Object segmentation |
|
|
Abstract |
In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-662-44853-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HVS2014 |
Serial |
2535 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
|
|
Title |
Ontology-Based Understanding of Architectural Drawings |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
9657 |
Issue |
|
Pages |
75-85 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Graphics recognition; Floor plan analysi; Domain ontology |
|
|
Abstract |
In this paper we present a knowledge base of architectural documents aiming at improving existing methods of floor plan classification and understanding. It consists of an ontological definition of the domain and the inclusion of real instances coming from both, automatically interpreted and manually labeled documents. The knowledge base has proven to be an effective tool to structure our knowledge and to easily maintain and upgrade it. Moreover, it is an appropriate means to automatically check the consistency of relational data and a convenient complement of hard-coded knowledge interpretation systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRL2017 |
Serial |
3086 |
|
Permanent link to this record |
|
|
|
|
Author |
Miquel Ferrer; Ernest Valveny; F. Serratosa; K. Riesen; Horst Bunke |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
43 |
Issue |
4 |
Pages |
1642–1655 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces |
|
|
Abstract |
The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FVS2010 |
Serial |
1294 |
|
Permanent link to this record |
|
|
|
|
Author |
Salim Jouili; Salvatore Tabbone; Ernest Valveny |
![find book details (via ISBN) isbn](http://refbase.cvc.uab.es/img/isbn.gif)
|
|
Title |
Evaluation of graph matching measures for documents retrieval |
Type |
Conference Article |
|
Year |
2009 |
Publication |
In proceedings of 8th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
13–21 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Graph Matching; Graph retrieval; structural representation; Performance Evaluation |
|
|
Abstract |
In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used which include line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each grahp distance measure depends on the kind of data and the graph representation technique. |
|
|
Address |
La Rochelle, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ JTV2009a |
Serial |
1230 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![goto web page (via DOI) doi](http://refbase.cvc.uab.es/img/doi.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Large-scale Graph Indexing using Binary Embeddings of Node Contexts |
Type |
Conference Article |
|
Year |
2015 |
Publication |
10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
9069 |
Issue |
|
Pages |
208-217 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding |
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents. |
|
|
Address |
Beijing; China; May 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
C.-L.Liu; B.Luo; W.G.Kropatsch; J.Cheng |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-18223-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015a |
Serial |
2618 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
33-38 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification |
|
|
Abstract |
Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRL2017 |
Serial |
3054 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Error-tolerant coarse-to-fine matching model for hierarchical graphs |
Type |
Conference Article |
|
Year |
2017 |
Publication |
11th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
10310 |
Issue |
|
Pages |
107-117 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Graph matching; Hierarchical graph; Graph-based representation; Coarse-to-fine matching |
|
|
Abstract |
Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose to generate a hierarchy able to deal with different levels of abstraction while keeping information about the topology. For the proposed representations, a coarse-to-fine matching method is defined. These approaches are validated using real scenarios such as classification of colour images and handwritten word spotting. |
|
|
Address |
Anacapri; Italy; May 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
Pasquale Foggia; Cheng-Lin Liu; Mario Vento |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2017a |
Serial |
2951 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Thierry Brouard; Jean-Yves Ramel; Josep Llados |
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Vers une approche foue of encapsulation de graphes: application a la reconnaissance de symboles |
Type |
Conference Article |
|
Year |
2010 |
Publication |
Colloque International Francophone sur l'Écrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
169-184 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Fuzzy interval; Graph embedding; Bayesian network; Symbol recognition |
|
|
Abstract |
We present a new methodology for symbol recognition, by employing a structural approach for representing visual associations in symbols and a statistical classifier for recognition. A graphic symbol is vectorized, its topological and geometrical details are encoded by an attributed relational graph and a signature is computed for it. Data adapted fuzzy intervals have been introduced for addressing the sensitivity of structural representations to noise. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set, and is deployed in a supervised learning scenario for recognizing query symbols. Experimental results on pre-segmented 2D linear architectural and electronic symbols from GREC databases are presented. |
|
|
Address |
Sousse, Tunisia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ LBR2010a |
Serial |
1293 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |
![find book details (via ISBN) isbn](http://refbase.cvc.uab.es/img/isbn.gif)
|
|
Title |
Symbol Spotting in Digital Libraries:Focused Retrieval over Graphic-rich Document Collections |
Type |
Book Whole |
|
Year |
2010 |
Publication |
Symbol Spotting in Digital Libraries:Focused Retrieval over Graphic-rich Document Collections |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Focused Retrieval , Graphical Pattern Indexation,Graphics Recognition ,Pattern Recognition , Performance Evaluation , Symbol Description ,Symbol Spotting |
|
|
Abstract |
The specific problem of symbol recognition in graphical documents requires additional techniques to those developed for character recognition. The most well-known obstacle is the so-called Sayre paradox: Correct recognition requires good segmentation, yet improvement in segmentation is achieved using information provided by the recognition process. This dilemma can be avoided by techniques that identify sets of regions containing useful information. Such symbol-spotting methods allow the detection of symbols in maps or technical drawings without having to fully segment or fully recognize the entire content.
This unique text/reference provides a complete, integrated and large-scale solution to the challenge of designing a robust symbol-spotting method for collections of graphic-rich documents. The book examines a number of features and descriptors, from basic photometric descriptors commonly used in computer vision techniques to those specific to graphical shapes, presenting a methodology which can be used in a wide variety of applications. Additionally, readers are supplied with an insight into the problem of performance evaluation of spotting methods. Some very basic knowledge of pattern recognition, document image analysis and graphics recognition is assumed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-84996-208-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RuL2010a |
Serial |
1292 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Lluis Pere de las Heras; Oriol Ramos Terrades |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Flowchart Recognition for Non-Textual Information Retrieval in Patent Search |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Information Retrieval |
Abbreviated Journal |
IR |
|
|
Volume |
17 |
Issue |
5-6 |
Pages |
545-562 |
|
|
Keywords ![sorted by Keywords field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
Flowchart recognition; Patent documents; Text/graphics separation; Raster-to-vector conversion; Symbol recognition |
|
|
Abstract |
Relatively little research has been done on the topic of patent image retrieval and in general in most of the approaches the retrieval is performed in terms of a similarity measure between the query image and the images in the corpus. However, systems aimed at overcoming the semantic gap between the visual description of patent images and their conveyed concepts would be very helpful for patent professionals. In this paper we present a flowchart recognition method aimed at achieving a structured representation of flowchart images that can be further queried semantically. The proposed method was submitted to the CLEF-IP 2012 flowchart recognition task. We report the obtained results on this dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1386-4564 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RHR2013 |
Serial |
2342 |
|
Permanent link to this record |