|
Abstract |
We present a new methodology for symbol recognition, by employing a structural approach for representing visual associations in symbols and a statistical classifier for recognition. A graphic symbol is vectorized, its topological and geometrical details are encoded by an attributed relational graph and a signature is computed for it. Data adapted fuzzy intervals have been introduced for addressing the sensitivity of structural representations to noise. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set, and is deployed in a supervised learning scenario for recognizing query symbols. Experimental results on pre-segmented 2D linear architectural and electronic symbols from GREC databases are presented. |
|