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Abstract. Graph-based representations are experiencing a growing us-
age in visual recognition and retrieval due to their representational power
in front of classical appearance-based representations in terms of feature
vectors. Retrieving a query graph from a large dataset of graphs has
the drawback of the high computational complexity required to compare
the query and the target graphs. The most important property for a
large-scale retrieval is the search time complexity to be sub-linear in the
number of database examples. In this paper we propose a fast index-
ation formalism for graph retrieval. A binary embedding is defined as
hashing keys for graph nodes. Given a database of labeled graphs, graph
nodes are complemented with vectors of attributes representing their lo-
cal context. Hence, each attribute counts the length of a walk of order k
originated in a vertex with label l. Each attribute vector is converted to
a binary code applying a binary-valued hash function. Therefore, graph
retrieval is formulated in terms of finding target graphs in the database
whose nodes have a small Hamming distance from the query nodes, eas-
ily computed with bitwise logical operators. As an application example,
we validate the performance of the proposed methods in a handwritten
word spotting scenario in images of historical documents.

Keywords: Graph matching, graph indexing, application in document
analysis, word spotting, binary embedding

1 Introduction

The practical success of machine learning methods applied to simple image rep-
resentations faded away other schemes representationally richer but practically
unfeasible. However, to tackle with complex recognition problems, methods not
exclusively based on appearance but enriched with more abstract visual informa-
tion, such as visual structure of objects, are required. Although the first attempts
of part-based descriptors suggesting graph representations were presented long
ago [10], it has been in the last decade when a resurgence of structural mod-
els has been perceived in computer vision. Graph representations are implicitly
or explicitly drivers of more powerful approaches for visual recognition and re-
trieval.
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Graphs are robust representations offering a representation paradigm able
to deal with many-to-many relationships among visual features and their parts.
The use of graph matching is an effective solution to deal with visual recognition.
Graph matching is among the most important challenges of graph processing.
Roughly speaking, the problem consists in finding the best correspondence be-
tween the sets of vertices of two graphs preserving the underlying structures
and the corresponding labels and attributes. Graph matching plays an impor-
tant role in many applications of computer vision and pattern recognition, and
several algorithms have been proposed in the literature [4]. One of the most pop-
ular error-tolerant graph matching methods is based on graph edit distance [19].
However the error-tolerant nature involves an inexact (sub)graph isomorphism
computation which is a known NP-Complete problem. Consequently, methods
based on graph edit distance are only applicable to graphs of small size. Ap-
proximate or suboptimal variations of graph edit distance have been proposed
to overcome this difficulty [16]. In the last years new approaches based on graph
embeddings and graph kernels have emerged rapidly [6, 15]. These methods are
based on finding an explicit or implicit transformation of the graph to a n-
dimensional space so the problem of graph similarity is elegantly reduced to
a machine learning problem using classical classification schemes (e.g. SVM).
Other solutions to reduce the complexity of graph matching are based on graph
serialization [7, 17] consisting in transforming the graph to a sequence so the
problem can be solved by an alignment algorithm in quadratic time. More re-
cently, Zhou et al. proposed an efficient approach based on graph factorization
[23] applied to deformable object recognition and alignment.

Although the existence of many suboptimal methods for graph matching, the
scalability to large scale scenarios is still a challenge. The huge increase of user-
generated contents (e.g. image repositories and videos in social networks) has
resulted in a need for services including algorithms for searching by content in
large databases. As stated before, structural information can play an important
role in developing such tools for content-based image retrieval (CBIR). In terms
of the complexity of graph matching, it can not be solved by comparing a query
graph with thousand or million graphs of the database in a sequential way.
Graph indexing approaches must be introduced. This is the motivation of the
work presented in this paper.

The problem of graph-based indexing or hashing has been addressed in the
literature, especially from the application point of view. In general, it is solved
by graph factorization techniques where the database of graphs is decomposed in
smaller ones that represent a codebook of compounding ones. The indexation is
therefore stated in terms of indexing the constituent graphs organized in a lookup
table structure. Messmer in [13] proposed an approach where the constituent
graphs are organized in a decision tree. At run time, subgraph isomorphisms
are detected by means of decision tree traversal. The complexity for indexing
is polynomial in the number of input graph vertices, but the decision tree is
of exponential size. A similar approach based on the construction of a graph
lattice was proposed in [20]. The performance for large scale retrieval is achieved
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by matching many overlapping and redundant subgraphs. In [3] an indexing
technique for graph databases is proposed. It is based on constructing a nested
inverted-index, called FG-index, based on the set of frequent subgraphs. Some
works have explored the use of local substructures for indexing. Hence, Yan et
al. [22] proposed a graph-based index in terms of frequent subgraphs.

Binary codes are compact descriptors that capture the local context of an
image keypoint, according to a local neighborhood pattern, and represent it with
a vector of bits. One of the most promising local descriptors is the efficient BRIEF
descriptor [2]. BRIEF is a binary descriptor that aims at quickly comparing local
features while requiring few amounts of memory. The BRIEF descriptor outputs
a set of bits obtained by comparing intensities of pairs of pixels within the local
key-region. The good property of binary codes is that, since they are represented
as vectors of bits, the comparison between two of them can be quickly computed
with basic logical operations (usually XOR) using directly the features of the
CPU.

In this paper we propose a graph hashing approach inspired by the ideas
of binary encoding for CBIR. We propose to extend the attributes associated
to graph nodes by an embedding function describing the local context of the
node. By local context we mean the structure of a subgraph centered at the
node of radius k (the radius means the length of the path to the farthest node).
This vector of attributes is converted to a binary code applying a binary-valued
hash function. Therefore, graph retrieval is formulated in terms of finding target
(sub)graphs in the database whose nodes have a small Hamming distance from
the query nodes. This indexation based on binary codes can be easily computed
with bitwise logical operators (XOR) taking advantage of the hardware benefits.

The rest of this paper is organized as follows: in Section 2 we describe the sci-
entific contribution of our work. Section 3 presents an application example where
our proposed graph indexing approach is applied to the problem of handwritten
word spotting in historical documents. Finally Section 4 draws the conclusion.

2 Binary Embedding Formulation

In this section we describe the main contribution of this work consisting in the
encoding of the local topological context of graph nodes by binary vectors. It
allows to construct a fast indexing scheme in terms of the Hamming distance.

2.1 Binary topological node features

An attributed graph G is defined as a 4-tuple. G = (V,E, LV , LE) where V is
the set of nodes; E ⊆ V × V is the set of edges; LV and LE are two labeling
functions defined as LV : V → ΣV ×AkV and LE : E → ΣE×AlE , where ΣV and
ΣE are two sets of symbolic labels for vertices and edges, respectively, AV and
AE are two sets of attributes for vertices and edges, respectively, and k, l ∈ IN.
We will denote the number of vertices in a graph by |V | and the number of edges
by |E|.
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An embedding function φ : G → IRn transforms a graph G ∈ G to an n-
dimensional feature vector. Hence, the distance between two graphs can be com-
puted by a distance in a metric space, and the problem of graph classification
can be solved by a statistical learning approach.

The Morgan index M is a node feature, originally used to characterize chem-
ical structures [14], that computes the node context in terms of its local context.
This index is iteratively computed for each node v ∈ V as follows:

M(v, k) =

{
1 if k = 0;∑
uM(u, k − 1) otherwise.

where u is a vertex adjacent to v. The Morgan index of order k associated to
a given node v M(v, k) counts the number of paths of length k incident to node v
and starting somewhere in the graph. The Morgan index can be computed by the
values of the exponentiation of the adjacency matrix. An interesting property of
the adjacency matrix A of any graph G is that the (i, j)th entry of An denotes
the number of walks of length n from the node vj to the node vi. Therefore, the
Morgan index of order k a node vi is equivalent to the sum of the cells of the
i-th row of the matrix Ak, formally M(vi, k) =

∑
j A

k(i, j), j = 1 . . . |V |.
Inspired by the topological node features proposed by Dahm et al. [5] we

define the context of a node v as a node embedding function computed in terms of
the topological information of a subgraph centered at v. This context is described
in terms of the Morgan index, but it is enriched taking into account the labels
of the neighboring nodes. Hence, let us define a variation of the Morgan index
concept as follows. Let us denote as Ml(v, k) the Morgan index of node v, order
k and label l which counts the number of paths of length k incident at node v
and starting at nodes labeled as l. According to this, the context of a node v is
formally defined as:

ν(v) = [Ml1(v, 1), . . . ,Ml1(v,K),Ml2(v, 1), . . . ,Ml2(v,K), . . . ,Ml|ΣV |(v,K)],

where K is the maximum length of the paths incident in v that is considered.
The value of K is dependent of each experimental setup. In the application case
described in Section 3.3 we have set K = 3. Thus, every graph node is attributed
by a K · |ΣV | feature vector characterizing the number of paths incident at v of
lengths up to K and starting at nodes for all the possible labels in ΣV .

The context vector ν(v) is converted to a binary code ν̂(v) = {0, 1}K·|ΣV | in
terms of a list of corresponding threshold values Ti. These values are application
dependent, and in the use case described in Section 3.3 are set to the mean of
each dimension.

Figure 1 illustrates the computation of the binary codes. In this example, the
codes associated to nodes have length 6 (K = 3 and |ΣV | = 2). The threshold
value is set to the mean of each Ml(v, k).

2.2 Indexing

Given a query graph Gq and a database of graphs {G1, . . . , GT }, a focused graph
retrieval problem is defined as finding the subgraphs of Gi similar to Gq. Thus, it
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Fig. 1. Example of the binary code computation from a graph.

consists in finding inexact subgraph matchings between the query and the target
graphs. The graph indexing scheme proposed in this paper follows the paradigm
of focused retrieval. In terms of a visual retrieval application, this process can
be understood as not only retrieving the images of a database where a query
object is likely to appear, but finding the position in each retrieved image. Our
proposed graph indexing approach follows this objective.

An inverted file indexing architecture in terms of node contexts is con-
structed. It stores a mapping from the binary topological features to the nodes
of the target graphs in the database. This inverted file is therefore formulated
as a lookup table H : {0, 1}b → {vi}vi∈V that indexes a b-bit vector and returns
a list of nodes whose context (binary code) is similar to the input code.

The last step is the actual subgraph matching process. With the indexing
table H we only retrieve individual nodes, so it is necessary to implement a
node consistency verification. With this purpose, we define a partition P of a
graph G as a decomposition of it in n small subgraphs, P (G) = {g1, . . . , gn},
where gi ⊆ G. Hence, the lookup table H is reformulated as a hashing function
that instead of returning nodes similar to the input binary code, it returns sub-
graphs where these target nodes appear. Formally, given a query graph Gq and
a database of graphs {G1, . . . , GT }, for each node of the query graph v ∈ Vq,
the indexation function H returns the subgraphs of the database, after a parti-
tion has been previously defined, containing this vertex H(v) = {gi}, where gi
is a subgraph of one of the target graphs {G1, . . . , GT }. The definition of the
partition under which the database of graphs is decomposed in small graphs is
application dependent. The subgraphs gi can be seen as voting bins, accord-
ing to a Hough-based principle. Thus, the final result consists of the subgraphs
receiving a high number of votes.

Concerning the practical implementation of H that computes the Hamming
distance between binary codes, the most straightforward solution is a brute-force
linear scan, i.e. to compute the Hamming distance between the query vector and
each vector in the database. Computing the Hamming distance between two
vectors consists in computing the XOR and counting the number of 1’s in the
resulting vector. This computation can be computed very fast on modern CPU’s,
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with logic operations being part of the instruction set. A fast hashing process like
Locality Sensitive Hashing (LSH) [11] can be added to speed up the indexation.

3 Application Example

This section experimentally illustrates the graph indexing approach with a prac-
tical application consisting in word spotting in historical manuscripts.

3.1 Handwritten word spotting

The preservation of historical handwritten document collections is of key impor-
tance for archives, museums and libraries. Their goal is not only the digitization
of paper documents, but also the extraction of the information that these doc-
uments contain towards the creation of digital libraries. Since the cost of the
manual transcription by human experts is prohibitive, the challenge is to en-
able the automatic extraction of information through document image analysis
techniques.

Since handwriting recognition techniques require large amounts of annotated
images to train the recognizer, word spotting is a viable solution to make histor-
ical manuscripts amenable to searching and browsing, especially when training
data is difficult to obtain. Word spotting is defined as the task of retrieving
all the instances of a given query word. In this scenario, the user selects one
by looking at the documents, and the system retrieves all words with a similar
shape. The first advantage is that word spotting can be performed on-the-fly:
the user can crop a word in a new document collection, and the system searches
for similar words without any training step. The second advantage is that, since
the query word is treated as a shape, these approaches are also able to retrieve
graphical elements, such as stamps, symbols, or seals.

Most existing word spotting techniques use statistical representations (e.g.
SIFT, HOG) of the word images [1, 18]. However, there also exists few approaches
using structural representations. The main motivation is that the nature of hand-
writing suggests than the structure is more stable than the pure appearance of
the handwritten strokes. This is specially important when dealing with the elas-
tic deformations of different handwriting styles.

As stated in the comparison of statistical versus structural representations for
handwritten word spotting reported in [12], the main disadvantages of structural
approaches are the time complexity and scalability to large document collections.
Although some methods [9] only use the graph nodes (avoiding the edges), and
other approaches [21] propose an embedding using a bag of graphlets (codebook
of small graphs, with order 2 or 3), these approaches are still far away of being
able to cope with large databases in an efficient way.

However, we believe that the graph indexing using binary embeddings pro-
posed in this paper can be the key to make the graph-based word spotting
approaches comparable to statistical ones in terms of time and memory require-
ments for large document collections.
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3.2 Experimental setup

For the experiments, we have used some pages from the Barcelona Histori-
cal Handwritten Marriages Database (BH2M) [8]. It consists of 174 images of
manuscripts from the 17th century. The images are part of a collection of mar-
riage records from the archive of the Barcelona Cathedral. The use of word
spotting in this collection allows to search names, places, occupations, etc. To
illustrate the performance of the method proposed in this paper, 11 pages and
5 instances of 8 query words have been selected. Images are represented by at-
tributed graphs where nodes correspond to basic primitives (graphemes) like
loops, vertical lines, arcs, etc. and nodes represent adjacency relations between
primitives. This results in 40 query graphs and 11 graphs corresponding to the
database images. It has to be noticed that the graphs corresponding to pages
of documents contain several connected graphs (between 200-300 in average)
corresponding to words or parts of them. In total, the 11 pages contain 3,609
words. In terms of size, query graphs have an average of 25 nodes, and a graph
representing a page of a document has an average of 4,500 nodes. If the whole
database is considered as a unique large graph, it consists of 50,556 nodes. The
partition of the database to define the voting bins is roughly associated to pos-
sible words in the images in terms of bounding boxes of connected components.
The generation of page graphs takes long time, but it is computed off-line. The
extraction of graphemes and the construction of the corresponding graph has
a complexity of O(n2). Concerning the setup of the method, the node contexts
have been computed with the paths up to order K = 3, and the number of
possible node labels is |ΣV | = 10. Thus, the length of binary vectors is 30.

3.3 Results

To visually assess the performance of the method, the result of a query word
graph is shown in Fig. 2. Figure 2(a) shows a query word and the corresponding
graph. Figure 2(b) illustrates the locations where query nodes are detected. It
can be appreciated that in the locations where a true positive exists there is a
higher density of votes.

In Table 1 we quantitatively report the performance metrics. For each query
word, we show the figures of averaging the 5 query instances. For each query, we
show the precision, recall and F1-score measures. We can observe that we are
obtaining a quite high recall values, i.e. most of the true positives are retrieved,
however the precision is quite low, so there is a high number of false positives. It
must be noticed that these values depend on the acceptance threshold that is set
to consider a retrieval as correct. The graph indexation presented in this paper
must not be seen as a final graph matching but a coarse step to quickly locate
subgraphs of the database likely to match to the query graph. However, a more
accurate matching should be done afterwards with the retrieved subgraphs.

In terms of computational cost, although the implementation is not opti-
mized, the elapsed time for indexing a graph corresponding to a page is 0,02



8 Pau Riba, Josep Lladós, Alicia Fornés, Anjan Dutta

(a) (b)

Fig. 2. Qualitative results: (a) A query word and its corresponding graph; (b) A full
page and the locations where query nodes are detected.

seconds (target graph of 4,500 nodes). The elapsed time of a standard imple-
mentation of a bipartite graph-matching method is 1,02 seconds. Hence, the time
is drastically reduced.

4 Conclusions

In this paper we have presented an approach for computing fast inexact sub-
graph matching for large scale retrieval purposes. The main contribution of the
proposed approach is the definition of a binary embedding for graph nodes based
on the called local context. The node context has been defined as the topology
of the paths of order k incident in the node and coming from nodes of a given
label. A hashing architecture has been designed using binary codes as indexa-
tion keys. An application consisting in word spotting into historical handwritten
document images has been used as experimental scenario. Although the results
are in a preliminary stage, they are encouraging. In terms of a retrieval prob-
lem, high recall values are obtained, although the precision is low. The time
complexity is linear in terms of the number of nodes of the database. It leads
us to conclude that a graph indexation scheme as it is proposed is very useful
to compute inexact subgraph matchings in large-scale scenarios as a filtering
step aiming to prune the database, so a more accurate matching method can be
computed afterwards only in the retrieved subgraphs. Finally, in terms of the ap-
plication, we have demonstrated that compact structural descriptors are useful
signatures for handwriting recognition, despite the variability of handwriting.
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Query Transcription Precision Recall F1-score

Eularia 0.0080 0.8462 0.0158

Hieronyma 0.0118 0.7875 0.0232

Jua$ 0.0149 0.5389 0.0291

defunct 0.0271 0.7886 0.0524

donsella 0.0420 0.8215 0.0796

pages 0.0590 0.9352 0.1107

rebere$ 0.0645 0.7676 0.1187

viudo 0.0133 0.6455 0.0261

Total 0.0301 0.7664 0.0569
Table 1. Quantitative results of word spotting based on graph indexing.
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