|
Records |
Links |
|
Author |
Marçal Rusiñol; Josep Llados |

|
|
Title |
Boosting the Handwritten Word Spotting Experience by Including the User in the Loop |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
3 |
Pages |
1063–1072 |
|
|
Keywords |
Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling |
|
|
Abstract |
In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuL2013 |
Serial |
2343 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Lluis Pere de las Heras; Oriol Ramos Terrades |


|
|
Title |
Flowchart Recognition for Non-Textual Information Retrieval in Patent Search |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Information Retrieval |
Abbreviated Journal |
IR |
|
|
Volume |
17 |
Issue |
5-6 |
Pages |
545-562 |
|
|
Keywords |
Flowchart recognition; Patent documents; Text/graphics separation; Raster-to-vector conversion; Symbol recognition |
|
|
Abstract |
Relatively little research has been done on the topic of patent image retrieval and in general in most of the approaches the retrieval is performed in terms of a similarity measure between the query image and the images in the corpus. However, systems aimed at overcoming the semantic gap between the visual description of patent images and their conveyed concepts would be very helpful for patent professionals. In this paper we present a flowchart recognition method aimed at achieving a structured representation of flowchart images that can be further queried semantically. The proposed method was submitted to the CLEF-IP 2012 flowchart recognition task. We report the obtained results on this dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1386-4564 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RHR2013 |
Serial |
2342 |
|
Permanent link to this record |
|
|
|
|
Author |
Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades |


|
|
Title |
New Approach for Symbol Recognition Combining Shape Context of Interest Points with Sparse Representation |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
265-269 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a new approach for symbol description. Our method is built based on the combination of shape context of interest points descriptor and sparse representation. More specifically, we first learn a dictionary describing shape context of interest point descriptors. Then, based on information retrieval techniques, we build a vector model for each symbol based on its sparse representation in a visual vocabulary whose visual words are columns in the learneddictionary. The retrieval task is performed by ranking symbols based on similarity between vector models. Evaluation of our method, using benchmark datasets, demonstrates the validity of our approach and shows that it outperforms related state-of-theart methods. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DTR2013b |
Serial |
2331 |
|
Permanent link to this record |
|
|
|
|
Author |
R. Bertrand; P. Gomez-Krämer; Oriol Ramos Terrades; P. Franco; Jean-Marc Ogier |


|
|
Title |
A System Based On Intrinsic Features for Fraudulent Document Detection |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
106-110 |
|
|
Keywords |
paper document; document analysis; fraudulent document; forgery; fake |
|
|
Abstract |
Paper documents still represent a large amount of information supports used nowadays and may contain critical data. Even though official documents are secured with techniques such as printed patterns or artwork, paper documents suffer froma lack of security.
However, the high availability of cheap scanning and printing hardware allows non-experts to easily create fake documents. As the use of a watermarking system added during the document production step is hardly possible, solutions have to be proposed to distinguish a genuine document from a forged one.
In this paper, we present an automatic forgery detection method based on document’s intrinsic features at character level. This method is based on the one hand on outlier character detection in a discriminant feature space and on the other hand on the detection of strictly similar characters. Therefore, a feature set iscomputed for all characters. Then, based on a distance between characters of the same class. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGR2013a |
Serial |
2332 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |


|
|
Title |
Handwritten Word Spotting with Corrected Attributes |
Type |
Conference Article |
|
Year |
2013 |
Publication |
15th IEEE International Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1017-1024 |
|
|
Keywords |
|
|
|
Abstract |
We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results. |
|
|
Address |
Sydney; Australia; December 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-5499 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGF2013 |
Serial |
2327 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Cruz; Oriol Ramos Terrades |


|
|
Title |
Handwritten Line Detection via an EM Algorithm |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
718-722 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a handwritten line segmentation method devised to work on documents composed of several paragraphs with multiple line orientations. The method is based on a variation of the EM algorithm for the estimation of a set of regression lines between the connected components that compose the image. We evaluated our method on the ICDAR2009 handwriting segmentation contest dataset with promising results that overcome most of the presented methods. In addition, we prove the usability of the presented method by performing line segmentation on the George Washington database obtaining encouraging results. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ CrT2013 |
Serial |
2329 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Alicia Fornes; Ernest Valveny |


|
|
Title |
A Deformable HOG-based Shape Descriptor |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1022-1026 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ AFV2013 |
Serial |
2326 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; David Fernandez; Ernest Valveny; Josep Llados; Gemma Sanchez |


|
|
Title |
Unsupervised wall detector in architectural floor plan |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1245-1249 |
|
|
Keywords |
|
|
|
Abstract |
Wall detection in floor plans is a crucial step in a complete floor plan recognition system. Walls define the main structure of buildings and convey essential information for the detection of other structural elements. Nevertheless, wall segmentation is a difficult task, mainly because of the lack of a standard graphical notation. The existing approaches are restricted to small group of similar notations or require the existence of pre-annotated corpus of input images to learn each new notation. In this paper we present an automatic wall segmentation system, with the ability to handle completely different notations without the need of any annotated dataset. It only takes advantage of the general knowledge that walls are a repetitive element, naturally distributed within the plan and commonly modeled by straight parallel lines. The method has been tested on four datasets of real floor plans with different notations, and compared with the state-of-the-art. The results show its suitability for different graphical notations, achieving higher recall rates than the rest of the methods while keeping a high average precision. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061; 600.056; 600.045 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HFV2013 |
Serial |
2319 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez;Josep Llados |

|
|
Title |
Perceptual retrieval of architectural floor plans |
Type |
Conference Article |
|
Year |
2013 |
Publication |
10th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a runlength histogram signature as a percetual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query,
similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Preliminary results show the interest of the proposed approach and opens a challenging research line in graphics recognition. |
|
|
Address |
Bethlehem; PA; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.045; 600.056; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HFF2013a |
Serial |
2320 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez |

|
|
Title |
Combining structural and statistical strategies for unsupervised wall detection in floor plans |
Type |
Conference Article |
|
Year |
2013 |
Publication |
10th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper presents an evolution of the first unsupervised wall segmentation method in floor plans, that was presented by the authors in [1]. This first approach, contrarily to the existing ones, is able to segment walls independently to their notation and without the need of any pre-annotated data
to learn their visual appearance. Despite the good performance of the first approach, some specific cases, such as curved shaped walls, were not correctly segmented since they do not agree the strict structural assumptions that guide the whole methodology in order to be able to learn, in an unsupervised way, the structure of a wall. In this paper, we refine this strategy by dividing the
process in two steps. In a first step, potential wall segments are extracted unsupervisedly using a modification of [1], by restricting even more the areas considered as walls in a first moment. In a second step, these segments are used to learn and spot lost instances based on a modified version of [2], also presented by the authors. The presented combined method have been tested on
4 datasets with different notations and compared with the stateof-the-art applyed on the same datasets. The results show its adaptability to different wall notations and shapes, significantly outperforming the original approach. |
|
|
Address |
Bethlehem; PA; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.045 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HVS2013a |
Serial |
2321 |
|
Permanent link to this record |