toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Oriol Vicente; Alicia Fornes; Ramon Valdes edit   pdf
openurl 
  Title The Digital Humanities Network of the UABCie: a smart structure of research and social transference for the digital humanities Type Conference Article
  Year 2016 Publication Digital Humanities Centres: Experiences and Perspectives Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Warsaw; Poland; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DHLABS  
  Notes DAG; 600.097 Approved no  
  Call Number Admin @ si @ VFV2016 Serial 2908  
Permanent link to this record
 

 
Author Veronica Romero; Alicia Fornes; Enrique Vidal; Joan Andreu Sanchez edit   pdf
openurl 
  Title Using the MGGI Methodology for Category-based Language Modeling in Handwritten Marriage Licenses Books Type Conference Article
  Year 2016 Publication 15th international conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten marriage licenses books have been used for centuries by ecclesiastical and secular institutions to register marriages. The information contained in these historical documents is useful for demography studies and
genealogical research, among others. Despite the generally simple structure of the text in these documents, automatic transcription and semantic information extraction is difficult due to the distinct and evolutionary vocabulary, which is composed mainly of proper names that change along the time. In previous
works we studied the use of category-based language models to both improve the automatic transcription accuracy and make easier the extraction of semantic information. Here we analyze the main causes of the semantic errors observed in previous results and apply a Grammatical Inference technique known as MGGI to improve the semantic accuracy of the language model obtained. Using this language model, full handwritten text recognition experiments have been carried out, with results supporting the interest of the proposed approach.
 
  Address Shenzhen; China; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.097; 602.006 Approved no  
  Call Number Admin @ si @ RFV2016 Serial 2909  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
url  openurl
  Title Product graph-based higher order contextual similarities for inexact subgraph matching Type Journal Article
  Year 2018 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 76 Issue Pages 596-611  
  Keywords  
  Abstract Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DLB2018 Serial 3083  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Sparse representation over learned dictionary for symbol recognition Type Journal Article
  Year 2016 Publication Signal Processing Abbreviated Journal SP  
  Volume 125 Issue Pages 36-47  
  Keywords Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points  
  Abstract In this paper we propose an original sparse vector model for symbol retrieval task. More speci cally, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ DTR2016 Serial 2946  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit   pdf
url  openurl
  Title Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs Type Conference Article
  Year 2017 Publication 8th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines  
  Abstract We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction.  
  Address Faro; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017a Serial 2953  
Permanent link to this record
 

 
Author Lasse Martensson; Anders Hast; Alicia Fornes edit   pdf
isbn  openurl
  Title Word Spotting as a Tool for Scribal Attribution Type Conference Article
  Year 2017 Publication 2nd Conference of the association of Digital Humanities in the Nordic Countries Abbreviated Journal  
  Volume Issue Pages 87-89  
  Keywords  
  Abstract  
  Address Gothenburg; Suecia; March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-91-88348-83-8 Medium  
  Area Expedition Conference DHN  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ MHF2017 Serial 2954  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  openurl
  Title Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary Type Book Chapter
  Year 2016 Publication Recent Trends in Image Processing and Pattern Recognition Abbreviated Journal  
  Volume 709 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference RTIP2R  
  Notes DAG Approved no  
  Call Number Admin @ si @ HTR2016 Serial 2956  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit  doi
openurl 
  Title Learning structural loss parameters on graph embedding applied on symbolic graphs Type Conference Article
  Year 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017b Serial 3073  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Katerine Diaz edit   pdf
doi  openurl
  Title Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness Type Journal Article
  Year 2018 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 77 Issue 11 Pages 13773-13798  
  Keywords Augmented reality; Document image matching; Educational applications  
  Abstract This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084; 600.121; 600.118; 600.129 Approved no  
  Call Number Admin @ si @ RCD2018 Serial 2996  
Permanent link to this record
 

 
Author J. Chazalon; P. Gomez-Kramer; Jean-Christophe Burie; M.Coustaty; S.Eskenazi; Muhammad Muzzamil Luqman; Nibal Nayef; Marçal Rusiñol; N. Sidere; Jean-Marc Ogier edit   pdf
doi  openurl
  Title SmartDoc 2017 Video Capture: Mobile Document Acquisition in Video Mode Type Conference Article
  Year 2017 Publication 1st International Workshop on Open Services and Tools for Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract As mobile document acquisition using smartphones is getting more and more common, along with the continuous improvement of mobile devices (both in terms of computing power and image quality), we can wonder to which extent mobile phones can replace desktop scanners. Modern applications can cope with perspective distortion and normalize the contrast of a document page captured with a smartphone, and in some cases like bottle labels or posters, smartphones even have the advantage of allowing the acquisition of non-flat or large documents. However, several cases remain hard to handle, such as reflective documents (identity cards, badges, glossy magazine cover, etc.) or large documents for which some regions require an important amount of detail. This paper introduces the SmartDoc 2017 benchmark (named “SmartDoc Video Capture”), which aims at
assessing whether capturing documents using the video mode of a smartphone could solve those issues. The task under evaluation is both a stitching and a reconstruction problem, as the user can move the device over different parts of the document to capture details or try to erase highlights. The material released consists of a dataset, an evaluation method and the associated tool, a sample method, and the tools required to extend the dataset. All the components are released publicly under very permissive licenses, and we particularly cared about maximizing the ease of
understanding, usage and improvement.
 
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR-OST  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ CGB2017 Serial 2997  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: