toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Anders Hast; Alicia Fornes edit   pdf
doi  openurl
  Title A Segmentation-free Handwritten Word Spotting Approach by Relaxed Feature Matching Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 150-155  
  Keywords  
  Abstract The automatic recognition of historical handwritten documents is still considered challenging task. For this reason, word spotting emerges as a good alternative for making the information contained in these documents available to the user. Word spotting is defined as the task of retrieving all instances of the query word in a document collection, becoming a useful tool for information retrieval. In this paper we propose a segmentation-free word spotting approach able to deal with large document collections. Our method is inspired on feature matching algorithms that have been applied to image matching and retrieval. Since handwritten words have different shape, there is no exact transformation to be obtained. However, the sufficient degree of relaxation is achieved by using a Fourier based descriptor and an alternative approach to RANSAC called PUMA. The proposed approach is evaluated on historical marriage records, achieving promising results.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 602.006; 600.061; 600.077; 600.097 Approved no  
  Call Number HaF2016 Serial 2753  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier edit   pdf
openurl 
  Title Filtrage de descripteurs locaux pour l'amélioration de la détection de documents Type Conference Article
  Year 2016 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages  
  Keywords Local descriptors; mobile capture; document matching; keypoint selection  
  Abstract In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework.In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.  
  Address Toulouse; France; March 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG; 600.084; 600.077 Approved no  
  Call Number Admin @ si @ RCO2016 Serial 2755  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; V. Poulain d'Andecy; Marçal Rusiñol edit   pdf
doi  openurl
  Title Human-Document Interaction – a new frontier for document image analysis Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 369-374  
  Keywords  
  Abstract All indications show that paper documents will not cede in favour of their digital counterparts, but will instead be used increasingly in conjunction with digital information. An open challenge is how to seamlessly link the physical with the digital – how to continue taking advantage of the important affordances of paper, without missing out on digital functionality. This paper
presents the authors’ experience with developing systems for Human-Document Interaction based on augmented document interfaces and examines new challenges and opportunities arising for the document image analysis field in this area. The system presented combines state of the art camera-based document
image analysis techniques with a range of complementary tech-nologies to offer fluid Human-Document Interaction. Both fixed and nomadic setups are discussed that have gone through user testing in real-life environments, and use cases are presented that span the spectrum from business to educational application
 
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.077 Approved no  
  Call Number KPR2016 Serial 2756  
Permanent link to this record
 

 
Author Q. Bao; Marçal Rusiñol; M.Coustaty; Muhammad Muzzamil Luqman; C.D. Tran; Jean-Marc Ogier edit   pdf
doi  openurl
  Title Delaunay triangulation-based features for Camera-based document image retrieval system Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing  
  Abstract In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 600.084; 600.077 Approved no  
  Call Number Admin @ si @ BRC2016 Serial 2757  
Permanent link to this record
 

 
Author Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
openurl 
  Title Dynamic Lexicon Generation for Natural Scene Images Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 395-410  
  Keywords scene text; photo OCR; scene understanding; lexicon generation; topic modeling; CNN  
  Abstract Many scene text understanding methods approach the endtoend recognition problem from a word-spotting perspective and take huge bene t from using small per-image lexicons. Such customized lexicons are normally assumed as given and their source is rarely discussed.
In this paper we propose a method that generates contextualized lexicons
for scene images using only visual information. For this, we exploit
the correlation between visual and textual information in a dataset consisting
of images and textual content associated with them. Using the topic modeling framework to discover a set of latent topics in such a dataset allows us to re-rank a xed dictionary in a way that prioritizes the words that are more likely to appear in a given image. Moreover, we train a CNN that is able to reproduce those word rankings but using only the image raw pixels as input. We demonstrate that the quality of the automatically obtained custom lexicons is superior to a generic frequency-based baseline.
 
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.084 Approved no  
  Call Number Admin @ si @ PGR2016 Serial 2825  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas edit  openurl
  Title The Library Living Lab Type Conference Article
  Year 2015 Publication Open Living Lab Days Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Istanbul; Turkey; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference OLLD  
  Notes MV; DAG;SIAI Approved no  
  Call Number Admin @ si @ViK2015 Serial 2797  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas; Marcos Catalan; Alberto Valcarcel edit  openurl
  Title An horizon for the Public Library as a place for innovation and creativity. The Library Living Lab in Volpelleres Type Book Chapter
  Year 2015 Publication The White Book on Public Library Network from Diputació de Barcelona Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; DAG;SIAI Approved no  
  Call Number Admin @ si @VKC2015 Serial 2798  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas edit  openurl
  Title A Living Lab approach for Citizen Science in Libraries Type Conference Article
  Year 2016 Publication 1st International ECSA Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Berlin; Germany; May 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference ECSA  
  Notes MV; DAG; 600.084; 600.097;SIAI Approved no  
  Call Number Admin @ si @ViK2016 Serial 2804  
Permanent link to this record
 

 
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
openurl 
  Title Improving Text Proposals for Scene Images with Fully Convolutional Networks Type Conference Article
  Year 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text
recognition. In this paper we propose an improvement over the original Text Proposals algorithm of [1], combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art.
 
  Address Cancun; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; LAMP; 600.084 Approved no  
  Call Number Admin @ si @ BGN2016 Serial 2823  
Permanent link to this record
 

 
Author Francisco Cruz edit  isbn
openurl 
  Title Probabilistic Graphical Models for Document Analysis Type Book Whole
  Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Latest advances in digitization techniques have fostered the interest in creating digital copies of collections of documents. Digitized documents permit an easy maintenance, loss-less storage, and efficient ways for transmission and to perform information retrieval processes. This situation has opened a new market niche to develop systems able to automatically extract and analyze information contained in these collections, specially in the ambit of the business activity.

Due to the great variety of types of documents this is not a trivial task. For instance, the automatic extraction of numerical data from invoices differs substantially from a task of text recognition in historical documents. However, in order to extract the information of interest, is always necessary to identify the area of the document where it is located. In the area of Document Analysis we refer to this process as layout analysis, which aims at identifying and categorizing the different entities that compose the document, such as text regions, pictures, text lines, or tables, among others. To perform this task it is usually necessary to incorporate a prior knowledge about the task into the analysis process, which can be modeled by defining a set of contextual relations between the different entities of the document. The use of context has proven to be useful to reinforce the recognition process and improve the results on many computer vision tasks. It presents two fundamental questions: What kind of contextual information is appropriate for a given task, and how to incorporate this information into the models.

In this thesis we study several ways to incorporate contextual information to the task of document layout analysis, and to the particular case of handwritten text line segmentation. We focus on the study of Probabilistic Graphical Models and other mechanisms for this purpose, and propose several solutions to these problems. First, we present a method for layout analysis based on Conditional Random Fields. With this model we encode local contextual relations between variables, such as pair-wise constraints. Besides, we encode a set of structural relations between different classes of regions at feature level. Second, we present a method based on 2D-Probabilistic Context-free Grammars to encode structural and hierarchical relations. We perform a comparative study between Probabilistic Graphical Models and this syntactic approach. Third, we propose a method for structured documents based on Bayesian Networks to represent the document structure, and an algorithm based in the Expectation-Maximization to find the best configuration of the page. We perform a thorough evaluation of the proposed methods on two particular collections of documents: a historical collection composed of ancient structured documents, and a collection of contemporary documents. In addition, we present a general method for the task of handwritten text line segmentation. We define a probabilistic framework where we combine the EM algorithm with variational approaches for computing inference and parameter learning on a Markov Random Field. We evaluate our method on several collections of documents, including a general dataset of annotated administrative documents. Results demonstrate the applicability of our method to real problems, and the contribution of the use of contextual information to this kind of problems.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Ramos Terrades  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN 978-84-945373-2-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Cru2016 Serial 2861  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: