|
Records |
Links |
|
Author |
Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados |


|
|
Title |
Spotting Graphical Symbols in Camera-Acquired Documents in Real Time |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
8746 |
Issue |
|
Pages |
3-10 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
Bart Lamiroy; Jean-Marc Ogier |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-662-44853-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.055; 600.061; 600.077 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RKL2014 |
Serial |
2700 |
|
Permanent link to this record |
|
|
|
|
Author |
Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier |


|
|
Title |
An active contour model for speech balloon detection in comics |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1240-1244 |
|
|
Keywords |
|
|
|
Abstract |
Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented. |
|
|
Address |
washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; CIC; 600.056 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RKW2013a |
Serial |
2260 |
|
Permanent link to this record |
|
|
|
|
Author |
Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier |

|
|
Title |
Automatic text localisation in scanned comic books |
Type |
Conference Article |
|
Year |
2013 |
Publication |
Proceedings of the International Conference on Computer Vision Theory and Applications |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
814-819 |
|
|
Keywords |
Text localization; comics; text/graphic separation; complex background; unstructured document |
|
|
Abstract |
Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent document understanding enable direct content-based search as opposed to metadata only search (e.g. album title or author name). Few studies have been done in this direction. In this work we detail a novel approach for the automatic text localization in scanned comics book pages, an essential step towards a fully automatic comics book understanding. We focus on speech text as it is semantically important and represents the majority of the text present in comics. The approach is compared with existing methods of text localization found in the literature and results are presented. |
|
|
Address |
Barcelona; February 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VISAPP |
|
|
Notes |
DAG; CIC; 600.056 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RKW2013b |
Serial |
2261 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |



|
|
Title |
Large-scale Graph Indexing using Binary Embeddings of Node Contexts |
Type |
Conference Article |
|
Year |
2015 |
Publication |
10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
9069 |
Issue |
|
Pages |
208-217 |
|
|
Keywords |
Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding |
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents. |
|
|
Address |
Beijing; China; May 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
C.-L.Liu; B.Luo; W.G.Kropatsch; J.Cheng |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-18223-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RLF2015a |
Serial |
2618 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |


|
|
Title |
Handwritten Word Spotting by Inexact Matching of Grapheme Graphs |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
781 - 785 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a graph-based word spotting for handwritten documents. Contrary to most word spotting techniques, which use statistical representations, we propose a structural representation suitable to be robust to the inherent deformations of handwriting. Attributed graphs are constructed using a part-based approach. Graphemes extracted from shape convexities are used as stable units of handwriting, and are associated to graph nodes. Then, spatial relations between them determine graph edges. Spotting is defined in terms of an error-tolerant graph matching using bipartite-graph matching algorithm. To make the method usable in large datasets, a graph indexing approach that makes use of binary embeddings is used as preprocessing. Historical documents are used as experimental framework. The approach is comparable to statistical ones in terms of time and memory requirements, especially when dealing with large document collections. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061; 602.006 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RLF2015b |
Serial |
2642 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |


|
|
Title |
Error-tolerant coarse-to-fine matching model for hierarchical graphs |
Type |
Conference Article |
|
Year |
2017 |
Publication |
11th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
10310 |
Issue |
|
Pages |
107-117 |
|
|
Keywords |
Graph matching; Hierarchical graph; Graph-based representation; Coarse-to-fine matching |
|
|
Abstract |
Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose to generate a hierarchy able to deal with different levels of abstraction while keeping information about the topology. For the proposed representations, a coarse-to-fine matching method is defined. These approaches are validated using real scenarios such as classification of colour images and handwritten word spotting. |
|
|
Address |
Anacapri; Italy; May 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
Pasquale Foggia; Cheng-Lin Liu; Mario Vento |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RLF2017a |
Serial |
2951 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |

|
|
Title |
Hierarchical graphs for coarse-to-fine error tolerant matching |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
134 |
Issue |
|
Pages |
116-124 |
|
|
Keywords |
Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval |
|
|
Abstract |
During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 601.302; 603.057; 600.140; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RLF2020 |
Serial |
3349 |
|
Permanent link to this record |
|
|
|
|
Author |
Youssef El Rhabi; Simon Loic; Brun Luc |


|
|
Title |
Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel |
Type |
Conference Article |
|
Year |
2015 |
Publication |
15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration |
|
|
Abstract |
Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data. |
|
|
Address |
Amiens; France; June 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ORASIS |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RLL2015 |
Serial |
2626 |
|
Permanent link to this record |
|
|
|
|
Author |
Youssef El Rhabi; Simon Loic; Brun Luc; Josep Llados; Felipe Lumbreras |

|
|
Title |
Information Theoretic Rotationwise Robust Binary Descriptor Learning |
Type |
Conference Article |
|
Year |
2016 |
Publication |
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
368-378 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a new data-driven approach for binary descriptor selection. In order to draw a clear analysis of common designs, we present a general information-theoretic selection paradigm. It encompasses several standard binary descriptor construction schemes, including a recent state-of-the-art one named BOLD. We pursue the same endeavor to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure. The effectiveness of our approach is demonstrated on two standard datasets, where our descriptor is compared to BOLD and to several classical descriptors. In particular, it emerges that our approach can reproduce equivalent if not better performance as BOLD while relying on twice shorter descriptors. Such an improvement can be influential for real-time applications. |
|
|
Address |
Mérida; Mexico; November 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
S+SSPR |
|
|
Notes |
DAG; ADAS; 600.097; 600.086 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RLL2016 |
Serial |
2871 |
|
Permanent link to this record |
|
|
|
|
Author |
Sangeeth Reddy; Minesh Mathew; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas; C.V. Jawahar |

|
|
Title |
RoadText-1K: Text Detection and Recognition Dataset for Driving Videos |
Type |
Conference Article |
|
Year |
2020 |
Publication |
IEEE International Conference on Robotics and Automation |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Perceiving text is crucial to understand semantics of outdoor scenes and hence is a critical requirement to build intelligent systems for driver assistance and self-driving. Most of the existing datasets for text detection and recognition comprise still images and are mostly compiled keeping text in mind. This paper introduces a new ”RoadText-1K” dataset for text in driving videos. The dataset is 20 times larger than the existing largest dataset for text in videos. Our dataset comprises 1000 video clips of driving without any bias towards text and with annotations for text bounding boxes and transcriptions in every frame. State of the art methods for text detection,
recognition and tracking are evaluated on the new dataset and the results signify the challenges in unconstrained driving videos compared to existing datasets. This suggests that RoadText-1K is suited for research and development of reading systems, robust enough to be incorporated into more complex downstream tasks like driver assistance and self-driving. The dataset can be found at http://cvit.iiit.ac.in/research/
projects/cvit-projects/roadtext-1k |
|
|
Address |
Paris; Francia; ??? |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICRA |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RMG2020 |
Serial |
3400 |
|
Permanent link to this record |