toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Jon Almazan; Alicia Fornes; Ernest Valveny edit  url
doi  isbn
openurl 
  Title A Non-Rigid Feature Extraction Method for Shape Recognition Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 987-991  
  Keywords  
  Abstract This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost.  
  Address Beijing; China; September 2011  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ AFV2011 Serial 1763  
Permanent link to this record
 

 
Author (up) Jon Almazan; Alicia Fornes; Ernest Valveny edit   pdf
doi  openurl
  Title A Deformable HOG-based Shape Descriptor Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1022-1026  
  Keywords  
  Abstract In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ AFV2013 Serial 2326  
Permanent link to this record
 

 
Author (up) Jon Almazan; David Fernandez; Alicia Fornes; Josep Llados; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection Type Conference Article
  Year 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 453-458  
  Keywords  
  Abstract In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AFF2012 Serial 1983  
Permanent link to this record
 

 
Author (up) Jon Almazan; Ernest Valveny; Alicia Fornes edit  doi
openurl 
  Title Deforming the Blurred Shape Model for Shape Description and Recognition Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 1-8  
  Keywords  
  Abstract This paper presents a new model for the description and recognition of distorted shapes, where the image is represented by a pixel density distribution based on the Blurred Shape Model combined with a non-linear image deformation model. This leads to an adaptive structure able to capture elastic deformations in shapes. This method has been evaluated using thee different datasets where deformations are present, showing the robustness and good performance of the new model. Moreover, we show that incorporating deformation and flexibility, the new model outperforms the BSM approach when classifying shapes with high variability of appearance.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Berlin Editor Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; Approved no  
  Call Number Admin @ si @ AVF2011 Serial 1732  
Permanent link to this record
 

 
Author (up) Jon Almazan; Lluis Gomez; Suman Ghosh; Ernest Valveny; Dimosthenis Karatzas edit  openurl
  Title WATTS: A common representation of word images and strings using embedded attributes for text recognition and retrieval Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Analysis”, K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ AGG2020 Serial 3496  
Permanent link to this record
 

 
Author (up) Jordi Vitria; Petia Radeva; X. Binefa; A. Pujol; Ernest Valveny; Robert Benavente; Craig Von Land edit  openurl
  Title Real time recognition of pharmaceutical products by subspace methods Type Report
  Year 1999 Publication CVC Technical Report #35 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address CVC (UAB)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MILAB;DAG;CIC;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ VRB1999b Serial 54  
Permanent link to this record
 

 
Author (up) Jordy Van Landeghem; Ruben Tito; Lukasz Borchmann; Michal Pietruszka; Pawel Joziak; Rafal Powalski; Dawid Jurkiewicz; Mickael Coustaty; Bertrand Anckaert; Ernest Valveny; Matthew Blaschko; Sien Moens; Tomasz Stanislawek edit   pdf
url  openurl
  Title Document Understanding Dataset and Evaluation (DUDE) Type Conference Article
  Year 2023 Publication 20th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 19528-19540  
  Keywords  
  Abstract We call on the Document AI (DocAI) community to re-evaluate current methodologies and embrace the challenge of creating more practically-oriented benchmarks. Document Understanding Dataset and Evaluation (DUDE) seeks to remediate the halted research progress in understanding visually-rich documents (VRDs). We present a new dataset with novelties related to types of questions, answers, and document layouts based on multi-industry, multi-domain, and multi-page VRDs of various origins and dates. Moreover, we are pushing the boundaries of current methods by creating multi-task and multi-domain evaluation setups that more accurately simulate real-world situations where powerful generalization and adaptation under low-resource settings are desired. DUDE aims to set a new standard as a more practical, long-standing benchmark for the community, and we hope that it will lead to future extensions and contributions that address real-world challenges. Finally, our work illustrates the importance of finding more efficient ways to model language, images, and layout in DocAI.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes DAG Approved no  
  Call Number Admin @ si @ LTB2023 Serial 3948  
Permanent link to this record
 

 
Author (up) Jose Antonio Rodriguez; Florent Perronnin; Gemma Sanchez; Josep Llados edit  doi
openurl 
  Title Unsupervised writer style adaptation for handwritten word spotting Type Conference Article
  Year 2008 Publication Pattern Recognition. 19th International Conference on, IBM Best Student Paper Award. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Tampa, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPS2008 Serial 1077  
Permanent link to this record
 

 
Author (up) Jose Antonio Rodriguez; Florent Perronnin; Gemma Sanchez; Josep Llados edit  url
doi  openurl
  Title Unsupervised writer adaptation of whole-word HMMs with application to word-spotting Type Journal Article
  Year 2010 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 31 Issue 8 Pages 742–749  
  Keywords Word-spotting; Handwriting recognition; Writer adaptation; Hidden Markov model; Document analysis  
  Abstract In this paper we propose a novel approach for writer adaptation in a handwritten word-spotting task. The method exploits the fact that the semi-continuous hidden Markov model separates the word model parameters into (i) a codebook of shapes and (ii) a set of word-specific parameters.

Our main contribution is to employ this property to derive writer-specific word models by statistically adapting an initial universal codebook to each document. This process is unsupervised and does not even require the appearance of the keyword(s) in the searched document. Experimental results show an increase in performance when this adaptation technique is applied. To the best of our knowledge, this is the first work dealing with adaptation for word-spotting. The preliminary version of this paper obtained an IBM Best Student Paper Award at the 19th International Conference on Pattern Recognition.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPS2010 Serial 1290  
Permanent link to this record
 

 
Author (up) Jose Antonio Rodriguez; Gemma Sanchez; Josep Llados edit  openurl
  Title Automatic Interpretation of Proofreading Sketches Type Miscellaneous
  Year 2006 Publication 3rd Eurographics Workshop on Sketch Based Interfaces and Modeling (SBIM´06), 35–42 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Vienna (Austria)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RSL2006a Serial 716  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: