|
Records |
Links |
|
Author |
Volkmar Frinken; Francisco Zamora; Salvador España; Maria Jose Castro; Andreas Fischer; Horst Bunke |


|
|
Title |
Long-Short Term Memory Neural Networks Language Modeling for Handwriting Recognition |
Type |
Conference Article |
|
Year |
2012 |
Publication |
21st International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
701-704 |
|
|
Keywords |
|
|
|
Abstract |
Unconstrained handwritten text recognition systems maximize the combination of two separate probability scores. The first one is the observation probability that indicates how well the returned word sequence matches the input image. The second score is the probability that reflects how likely a word sequence is according to a language model. Current state-of-the-art recognition systems use statistical language models in form of bigram word probabilities. This paper proposes to model the target language by means of a recurrent neural network with long-short term memory cells. Because the network is recurrent, the considered context is not limited to a fixed size especially as the memory cells are designed to deal with long-term dependencies. In a set of experiments conducted on the IAM off-line database we show the superiority of the proposed language model over statistical n-gram models. |
|
|
Address  |
Tsukuba Science City, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4673-2216-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FZE2012 |
Serial |
2052 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados |


|
|
Title |
Multipage Document Retrieval by Textual and Visual Representations |
Type |
Conference Article |
|
Year |
2012 |
Publication |
21st International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
521-524 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a multipage administrative document image retrieval system based on textual and visual representations of document pages. Individual pages are represented by textual or visual information using a bag-of-words framework. Different fusion strategies are evaluated which allow the system to perform multipage document retrieval on the basis of a single page retrieval system. Results are reported on a large dataset of document images sampled from a banking workflow. |
|
|
Address  |
Tsukuba Science City, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4673-2216-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKB2012 |
Serial |
2053 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Jaume Gibert; Josep Llados; Horst Bunke; Umapada Pal |


|
|
Title |
Combination of Product Graph and Random Walk Kernel for Symbol Spotting in Graphical Documents |
Type |
Conference Article |
|
Year |
2012 |
Publication |
21st International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1663-1666 |
|
|
Keywords |
|
|
|
Abstract |
This paper explores the utilization of product graph for spotting symbols on graphical documents. Product graph is intended to find the candidate subgraphs or components in the input graph containing the paths similar to the query graph. The acute angle between two edges and their length ratio are considered as the node labels. In a second step, each of the candidate subgraphs in the input graph is assigned with a distance measure computed by a random walk kernel. Actually it is the minimum of the distances of the component to all the components of the model graph. This distance measure is then used to eliminate dissimilar components. The remaining neighboring components are grouped and the grouped zone is considered as a retrieval zone of a symbol similar to the queried one. The entire method works online, i.e., it doesn't need any preprocessing step. The present paper reports the initial results of the method, which are very encouraging. |
|
|
Address  |
Tsukuba, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4673-2216-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGL2012 |
Serial |
2125 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Felipe Lumbreras; V. Chapaprieta; J. Queralt |

|
|
Title |
ICAR: Identity Card Automatic Reader. |
Type |
Miscellaneous |
|
Year |
2001 |
Publication |
Sixth International Conference on Document Analysis and Recognition |
Abbreviated Journal |
ICDAR 2001 |
|
|
Volume |
|
Issue |
|
Pages |
470–474 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address  |
USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;DAG |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ LLC2001 |
Serial |
112 |
|
Permanent link to this record |
|
|
|
|
Author |
Gemma Sanchez; Josep Llados |

|
|
Title |
A Graph Grammar to Recognize Textured Symbols. |
Type |
Miscellaneous |
|
Year |
2001 |
Publication |
Sixth International Conference on Document Analysis and Recognition, ICDAR 2001, 465–469. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address  |
USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ SLl2001 |
Serial |
162 |
|
Permanent link to this record |
|
|
|
|
Author |
Robert Benavente; Ernest Valveny; Jaume Garcia; Agata Lapedriza; Miquel Ferrer; Gemma Sanchez |

|
|
Title |
Una experiencia de adaptacion al EEES de las asignaturas de programacion en Ingenieria Informatica |
Type |
Miscellaneous |
|
Year |
2008 |
Publication |
V Congreso Iberoamericano de Docencia Universitaria, pp. 213–216 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address  |
Valencia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
OR;DAG;CIC;MV |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ BVG2008 |
Serial |
1031 |
|
Permanent link to this record |
|
|
|
|
Author |
Miquel Ferrer; Dimosthenis Karatzas; Ernest Valveny; Horst Bunke |


|
|
Title |
A Recursive Embedding Approach to Median Graph Computation |
Type |
Conference Article |
|
Year |
2009 |
Publication |
7th IAPR – TC–15 Workshop on Graph–Based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
5534 |
Issue |
|
Pages |
113–123 |
|
|
Keywords |
|
|
|
Abstract |
The median graph has been shown to be a good choice to infer a representative of a set of graphs. It has been successfully applied to graph-based classification and clustering. Nevertheless, its computation is extremely complex. Several approaches have been presented up to now based on different strategies. In this paper we present a new approximate recursive algorithm for median graph computation based on graph embedding into vector spaces. Preliminary experiments on three databases show that this new approach is able to obtain better medians than the previous existing approaches. |
|
|
Address  |
Venice, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-02123-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GBR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FKV2009 |
Serial |
1173 |
|
Permanent link to this record |
|
|
|
|
Author |
Leonardo Galteri; Dena Bazazian; Lorenzo Seidenari; Marco Bertini; Andrew Bagdanov; Anguelos Nicolaou; Dimosthenis Karatzas; Alberto del Bimbo |


|
|
Title |
Reading Text in the Wild from Compressed Images |
Type |
Conference Article |
|
Year |
2017 |
Publication |
1st International workshop on Egocentric Perception, Interaction and Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Reading text in the wild is gaining attention in the computer vision community. Images captured in the wild are almost always compressed to varying degrees, depending on application context, and this compression introduces artifacts
that distort image content into the captured images. In this paper we investigate the impact these compression artifacts have on text localization and recognition in the wild. We also propose a deep Convolutional Neural Network (CNN) that can eliminate text-specific compression artifacts and which leads to an improvement in text recognition. Experimental results on the ICDAR-Challenge4 dataset demonstrate that compression artifacts have a significant
impact on text localization and recognition and that our approach yields an improvement in both – especially at high compression rates. |
|
|
Address  |
Venice; Italy; October 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV - EPIC |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GBS2017 |
Serial |
3006 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas |


|
|
Title |
Cutting Sayre's Knot: Reading Scene Text without Segmentation. Application to Utility Meters |
Type |
Conference Article |
|
Year |
2018 |
Publication |
13th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
97-102 |
|
|
Keywords |
Robust Reading; End-to-end Systems; CNN; Utility Meters |
|
|
Abstract |
In this paper we present a segmentation-free system for reading text in natural scenes. A CNN architecture is trained in an end-to-end manner, and is able to directly output readings without any explicit text localization step. In order to validate our proposal, we focus on the specific case of reading utility meters. We present our results in a large dataset of images acquired by different users and devices, so text appears in any location, with different sizes, fonts and lengths, and the images present several distortions such as
dirt, illumination highlights or blur. |
|
|
Address  |
Viena; Austria; April 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2018 |
Serial |
3102 |
|
Permanent link to this record |
|
|
|
|
Author |
Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol; Anguelos Nicolaou |


|
|
Title |
The Robust Reading Competition Annotation and Evaluation Platform |
Type |
Conference Article |
|
Year |
2018 |
Publication |
13th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
61-66 |
|
|
Keywords |
|
|
|
Abstract |
The ICDAR Robust Reading Competition (RRC), initiated in 2003 and reestablished in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous
effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the
Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation of data, and to provide online and offline performance evaluation and analysis services. |
|
|
Address  |
Viena; Austria; April 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
KGR2018 |
Serial |
3103 |
|
Permanent link to this record |