toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Clement Guerin; Christophe Rigaud; Karell Bertet; Jean-Christophe Burie; Arnaud Revel ; Jean-Marc Ogier edit  openurl
  Title Réduction de l’espace de recherche pour les personnages de bandes dessinées Type Conference Article
  Year 2014 Publication 19th National Congress Reconnaissance de Formes et l'Intelligence Artificielle Abbreviated Journal  
  Volume Issue Pages  
  Keywords contextual search; document analysis; comics characters  
  Abstract (up) Les bandes dessinées représentent un patrimoine culturel important dans de nombreux pays et leur numérisation massive offre la possibilité d'effectuer des recherches dans le contenu des images. À ce jour, ce sont principalement les structures des pages et leurs contenus textuels qui ont été étudiés, peu de travaux portent sur le contenu graphique. Nous proposons de nous appuyer sur des éléments déjà étudiés tels que la position des cases et des bulles, pour réduire l'espace de recherche et localiser les personnages en fonction de la queue des bulles. L'évaluation de nos différentes contributions à partir de la base eBDtheque montre un taux de détection des queues de bulle de 81.2%, de localisation des personnages allant jusqu'à 85% et un gain d'espace de recherche de plus de 50%.  
  Address Rouen; Francia; July 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference RFIA  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GRB2014 Serial 2480  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas; Alberto Valcarce edit  openurl
  Title Libraries as New Innovation Hubs: The Library Living Lab Type Conference Article
  Year 2018 Publication 30th ISPIM Innovation Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Libraries are in deep transformation both in EU and around the world, and they are thriving within a great window of opportunity for innovation. In this paper, we show how the Library Living Lab in Barcelona participated of this changing scenario and contributed to create the Bibliolab program, where more than 200 public libraries give voice to their users in a global user-centric innovation initiative, using technology as enabling factor. The Library Living Lab is a real 4-helix implementation where Universities, Research Centers, Public Administration, Companies and the Neighbors are joint together to explore how technology transforms the cultural experience of people. This case is an example of scalability and provides reference tools for policy making, sustainability, user engage methodologies and governance. We provide specific examples of new prototypes and services that help to understand how to redefine the role of the Library as a real hub for social innovation.  
  Address Stockholm; May 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISPIM  
  Notes DAG; MV; 600.097; 600.121; 600.129;SIAI Approved no  
  Call Number Admin @ si @ VKV2018b Serial 3154  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Ali Furkan Biten; Sounak Dey; Alicia Fornes; Yousri Kessentini; Lluis Gomez; Dimosthenis Karatzas; Josep Llados edit   pdf
url  doi
openurl 
  Title One-shot Compositional Data Generation for Low Resource Handwritten Text Recognition Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords Document Analysis  
  Abstract (up) Low resource Handwritten Text Recognition (HTR) is a hard problem due to the scarce annotated data and the very limited linguistic information (dictionaries and language models). This appears, for example, in the case of historical ciphered manuscripts, which are usually written with invented alphabets to hide the content. Thus, in this paper we address this problem through a data generation technique based on Bayesian Program Learning (BPL). Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet. After generating symbols, we create synthetic lines to train state-of-the-art HTR architectures in a segmentation free fashion. Quantitative and qualitative analyses were carried out and confirm the effectiveness of the proposed method, achieving competitive results compared to the usage of real annotated data.  
  Address Virtual; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ SBD2022 Serial 3615  
Permanent link to this record
 

 
Author Raul Gomez edit  isbn
openurl 
  Title Exploiting the Interplay between Visual and Textual Data for Scene Interpretation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Machine learning experimentation under controlled scenarios and standard datasets is necessary to compare algorithms performance by evaluating all of them in the same setup. However, experimentation on how those algorithms perform on unconstrained data and applied tasks to solve real world problems is also a must to ascertain how that research can contribute to our society.
In this dissertation we experiment with the latest computer vision and natural language processing algorithms applying them to multimodal scene interpretation. Particularly, we research on how image and text understanding can be jointly exploited to address real world problems, focusing on learning from Social Media data.
We address several tasks that involve image and textual information, discuss their characteristics and offer our experimentation conclusions. First, we work on detection of scene text in images. Then, we work with Social Media posts, exploiting the captions associated to images as supervision to learn visual features, which we apply to multimodal semantic image retrieval. Subsequently, we work with geolocated Social Media images with associated tags, experimenting on how to use the tags as supervision, on location sensitive image retrieval and on exploiting location information for image tagging. Finally, we work on a specific classification problem of Social Media publications consisting on an image and a text: Multimodal hate speech classification.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez;Jaume Gibert  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-7-1 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Gom20 Serial 3479  
Permanent link to this record
 

 
Author Jialuo Chen; M.A.Souibgui; Alicia Fornes; Beata Megyesi edit   pdf
openurl 
  Title A Web-based Interactive Transcription Tool for Encrypted Manuscripts Type Conference Article
  Year 2020 Publication 3rd International Conference on Historical Cryptology Abbreviated Journal  
  Volume Issue Pages 52-59  
  Keywords  
  Abstract (up) Manual transcription of handwritten text is a time consuming task. In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets. To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources. The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s). This process is carried out in an interactive fashion with
the user to obtain more accurate results. For discovering and testing, the developed web tool is freely available.
 
  Address Virtual; June 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HistoCrypt  
  Notes DAG; 600.140; 602.230; 600.121 Approved no  
  Call Number Admin @ si @ CSF2020 Serial 3447  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
url  openurl
  Title Product graph-based higher order contextual similarities for inexact subgraph matching Type Journal Article
  Year 2018 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 76 Issue Pages 596-611  
  Keywords  
  Abstract (up) Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DLB2018 Serial 3083  
Permanent link to this record
 

 
Author Beata Megyesi; Bernhard Esslinger; Alicia Fornes; Nils Kopal; Benedek Lang; George Lasry; Karl de Leeuw; Eva Pettersson; Arno Wacker; Michelle Waldispuhl edit  url
openurl 
  Title Decryption of historical manuscripts: the DECRYPT project Type Journal Article
  Year 2020 Publication Cryptologia Abbreviated Journal CRYPT  
  Volume 44 Issue 6 Pages 545-559  
  Keywords automatic decryption; cipher collection; historical cryptology; image transcription  
  Abstract (up) Many historians and linguists are working individually and in an uncoordinated fashion on the identification and decryption of historical ciphers. This is a time-consuming process as they often work without access to automatic methods and processes that can accelerate the decipherment. At the same time, computer scientists and cryptologists are developing algorithms to decrypt various cipher types without having access to a large number of original ciphertexts. In this paper, we describe the DECRYPT project aiming at the creation of resources and tools for historical cryptology by bringing the expertise of various disciplines together for collecting data, exchanging methods for faster progress to transcribe, decrypt and contextualize historical encrypted manuscripts. We present our goals and work-in progress of a general approach for analyzing historical encrypted manuscripts using standardized methods and a new set of state-of-the-art tools. We release the data and tools as open-source hoping that all mentioned disciplines would benefit and contribute to the research infrastructure of historical cryptology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ MEF2020 Serial 3347  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Manuel Carbonell; Alicia Fornes; Josep Llados edit  url
openurl 
  Title Information Extraction from Historical Handwritten Document Images with a Context-aware Neural Model Type Journal Article
  Year 2019 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 86 Issue Pages 27-36  
  Keywords Document image analysis; Handwritten documents; Named entity recognition; Deep neural networks  
  Abstract (up) Many historical manuscripts that hold trustworthy memories of the past societies contain information organized in a structured layout (e.g. census, birth or marriage records). The precious information stored in these documents cannot be effectively used nor accessed without costly annotation efforts. The transcription driven by the semantic categories of words is crucial for the subsequent access. In this paper we describe an approach to extract information from structured historical handwritten text images and build a knowledge representation for the extraction of meaning out of historical data. The method extracts information, such as named entities, without the need of an intermediate transcription step, thanks to the incorporation of context information through language models. Our system has two variants, the first one is based on bigrams, whereas the second one is based on recurrent neural networks. Concretely, our second architecture integrates a Convolutional Neural Network to model visual information from word images together with a Bidirecitonal Long Short Term Memory network to model the relation among the words. This integrated sequential approach is able to extract more information than just the semantic category (e.g. a semantic category can be associated to a person in a record). Our system is generic, it deals with out-of-vocabulary words by design, and it can be applied to structured handwritten texts from different domains. The method has been validated with the ICDAR IEHHR competition protocol, outperforming the existing approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.311; 603.057; 600.084; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ TCF2019 Serial 3166  
Permanent link to this record
 

 
Author Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
openurl 
  Title Dynamic Lexicon Generation for Natural Scene Images Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 395-410  
  Keywords scene text; photo OCR; scene understanding; lexicon generation; topic modeling; CNN  
  Abstract (up) Many scene text understanding methods approach the endtoend recognition problem from a word-spotting perspective and take huge bene t from using small per-image lexicons. Such customized lexicons are normally assumed as given and their source is rarely discussed.
In this paper we propose a method that generates contextualized lexicons
for scene images using only visual information. For this, we exploit
the correlation between visual and textual information in a dataset consisting
of images and textual content associated with them. Using the topic modeling framework to discover a set of latent topics in such a dataset allows us to re-rank a xed dictionary in a way that prioritizes the words that are more likely to appear in a given image. Moreover, we train a CNN that is able to reproduce those word rankings but using only the image raw pixels as input. We demonstrate that the quality of the automatically obtained custom lexicons is superior to a generic frequency-based baseline.
 
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.084 Approved no  
  Call Number Admin @ si @ PGR2016 Serial 2825  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados edit  doi
openurl 
  Title Blurred Shape Model for Binary and Grey-level Symbol Recognition Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 15 Pages 1424–1433  
  Keywords  
  Abstract (up) Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; DAG; MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ EFP2009a Serial 1180  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: