|
Records |
Links  |
|
Author |
Volkmar Frinken; Andreas Fischer; Markus Baumgartner; Horst Bunke |


|
|
Title |
Keyword spotting for self-training of BLSTM NN based handwriting recognition systems |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
3 |
Pages |
1073-1082 |
|
|
Keywords |
Document retrieval; Keyword spotting; Handwriting recognition; Neural networks; Semi-supervised learning |
|
|
Abstract |
The automatic transcription of unconstrained continuous handwritten text requires well trained recognition systems. The semi-supervised paradigm introduces the concept of not only using labeled data but also unlabeled data in the learning process. Unlabeled data can be gathered at little or not cost. Hence it has the potential to reduce the need for labeling training data, a tedious and costly process. Given a weak initial recognizer trained on labeled data, self-training can be used to recognize unlabeled data and add words that were recognized with high confidence to the training set for re-training. This process is not trivial and requires great care as far as selecting the elements that are to be added to the training set is concerned. In this paper, we propose to use a bidirectional long short-term memory neural network handwritten recognition system for keyword spotting in order to select new elements. A set of experiments shows the high potential of self-training for bootstrapping handwriting recognition systems, both for modern and historical handwritings, and demonstrate the benefits of using keyword spotting over previously published self-training schemes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077; 602.101 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FFB2014 |
Serial |
2297 |
|
Permanent link to this record |
|
|
|
|
Author |
Veronica Romero; Alicia Fornes; Nicolas Serrano; Joan Andreu Sanchez; A.H. Toselli; Volkmar Frinken; E. Vidal; Josep Llados |


|
|
Title |
The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
6 |
Pages |
1658-1669 |
|
|
Keywords |
|
|
|
Abstract |
Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demography studies and genealogical research. Automatic processing of historical documents, however, has mostly been focused on single works of literature and less on social records, which tend to have a distinct layout, structure, and vocabulary. Such information is usually collected by expert demographers that devote a lot of time to manually transcribe them. This paper presents a new database, compiled from a marriage license books collection, to support research in automatic handwriting recognition for historical documents containing social records. Marriage license books are documents that were used for centuries by ecclesiastical institutions to register marriage licenses. Books from this collection are handwritten and span nearly half a millennium until the beginning of the 20th century. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems, when applied to the presented database. Baseline results are reported for reference in future studies. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Inc. New York, NY, USA |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 602.006; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RFS2013 |
Serial |
2298 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Alicia Fornes; Ernest Valveny |


|
|
Title |
Writer identification in handwritten musical scores with bags of notes |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
5 |
Pages |
1337-1345 |
|
|
Keywords |
|
|
|
Abstract |
Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GFV2013 |
Serial |
2307 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Graph Embedding in Vector Spaces by Node Attribute Statistics |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
45 |
Issue |
9 |
Pages |
3072-3083 |
|
|
Keywords |
Structural pattern recognition; Graph embedding; Data clustering; Graph classification |
|
|
Abstract |
Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2012a |
Serial |
1992 |
|
Permanent link to this record |
|
|
|
|
Author |
Palaiahnakote Shivakumara; Anjan Dutta; Trung Quy Phan; Chew Lim Tan; Umapada Pal |

|
|
Title |
A Novel Mutual Nearest Neighbor based Symmetry for Text Frame Classification in Video |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
44 |
Issue |
8 |
Pages |
1671-1683 |
|
|
Keywords |
|
|
|
Abstract |
In the field of multimedia retrieval in video, text frame classification is essential for text detection, event detection, event boundary detection, etc. We propose a new text frame classification method that introduces a combination of wavelet and median moment with k-means clustering to select probable text blocks among 16 equally sized blocks of a video frame. The same feature combination is used with a new Max–Min clustering at the pixel level to choose probable dominant text pixels in the selected probable text blocks. For the probable text pixels, a so-called mutual nearest neighbor based symmetry is explored with a four-quadrant formation centered at the centroid of the probable dominant text pixels to know whether a block is a true text block or not. If a frame produces at least one true text block then it is considered as a text frame otherwise it is a non-text frame. Experimental results on different text and non-text datasets including two public datasets and our own created data show that the proposed method gives promising results in terms of recall and precision at the block and frame levels. Further, we also show how existing text detection methods tend to misclassify non-text frames as text frames in term of recall and precision at both the block and frame levels. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDP2011 |
Serial |
1727 |
|
Permanent link to this record |