|
Records |
Links |
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Graph Embedding in Vector Spaces by Node Attribute Statistics |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
45 |
Issue |
9 |
Pages |
3072-3083 |
|
|
Keywords  |
Structural pattern recognition; Graph embedding; Data clustering; Graph classification |
|
|
Abstract |
Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2012a |
Serial |
1992 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Hichem Sahbi |


|
|
Title |
Stochastic Graphlet Embedding |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Neural Networks and Learning Systems |
Abbreviated Journal |
TNNLS |
|
|
Volume |
|
Issue |
|
Pages |
1-14 |
|
|
Keywords  |
Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality |
|
|
Abstract |
Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 602.167; 602.168; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DuS2018 |
Serial |
3225 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Alicia Fornes; Ernest Valveny |


|
|
Title |
A non-rigid appearance model for shape description and recognition |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
45 |
Issue |
9 |
Pages |
3105--3113 |
|
|
Keywords  |
Shape recognition; Deformable models; Shape modeling; Hand-drawn recognition |
|
|
Abstract |
In this paper we describe a framework to learn a model of shape variability in a set of patterns. The framework is based on the Active Appearance Model (AAM) and permits to combine shape deformations with appearance variability. We have used two modifications of the Blurred Shape Model (BSM) descriptor as basic shape and appearance features to learn the model. These modifications permit to overcome the rigidity of the original BSM, adapting it to the deformations of the shape to be represented. We have applied this framework to representation and classification of handwritten digits and symbols. We show that results of the proposed methodology outperform the original BSM approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AFV2012 |
Serial |
1982 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |

|
|
Title |
Document Seal Detection Using Ght and Character Proximity Graphs |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
44 |
Issue |
6 |
Pages |
1282-1295 |
|
|
Keywords  |
Seal recognition; Graphical symbol spotting; Generalized Hough transform; Multi-oriented character recognition |
|
|
Abstract |
This paper deals with automatic detection of seal (stamp) from documents with cluttered background. Seal detection involves a difficult challenge due to its multi-oriented nature, arbitrary shape, overlapping of its part with signature, noise, etc. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors computed from recognition result of individual connected components (characters). Scale and rotation invariant features are used in a Support Vector Machine (SVM) classifier to recognize multi-scale and multi-oriented text characters. The concept of generalized Hough transform (GHT) is used to detect the seal and a voting scheme is designed for finding possible location of the seal in a document based on the spatial feature descriptor of neighboring component pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal in a document. Experiment is performed in an archive of historical documents of handwritten/printed English text. Experimental results show that the method is robust in locating seal instances of arbitrary shape and orientation in documents, and also efficient in indexing a collection of documents for retrieval purposes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RPL2011 |
Serial |
1820 |
|
Permanent link to this record |
|
|
|
|
Author |
Lasse Martensson; Ekta Vats; Anders Hast; Alicia Fornes |

|
|
Title |
In Search of the Scribe: Letter Spotting as a Tool for Identifying Scribes in Large Handwritten Text Corpora |
Type |
Journal |
|
Year |
2019 |
Publication |
Journal for Information Technology Studies as a Human Science |
Abbreviated Journal |
HUMAN IT |
|
|
Volume |
14 |
Issue |
2 |
Pages |
95-120 |
|
|
Keywords  |
Scribal attribution/ writer identification; digital palaeography; word spotting; mediaeval charters; mediaeval manuscripts |
|
|
Abstract |
In this article, a form of the so-called word spotting-method is used on a large set of handwritten documents in order to identify those that contain script of similar execution. The point of departure for the investigation is the mediaeval Swedish manuscript Cod. Holm. D 3. The main scribe of this manuscript has yet not been identified in other documents. The current attempt aims at localising other documents that display a large degree of similarity in the characteristics of the script, these being possible candidates for being executed by the same hand. For this purpose, the method of word spotting has been employed, focusing on individual letters, and therefore the process is referred to as letter spotting in the article. In this process, a set of ‘g’:s, ‘h’:s and ‘k’:s have been selected as templates, and then a search has been made for close matches among the mediaeval Swedish charters. The search resulted in a number of charters that displayed great similarities with the manuscript D 3. The used letter spotting method thus proofed to be a very efficient sorting tool localising similar script samples. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MVH2019 |
Serial |
3234 |
|
Permanent link to this record |