toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title (up) Implicit Polynomial Representation through a Fast Fitting Error Estimation Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 4 Pages 2089-2098  
  Keywords  
  Abstract Impact Factor
This paper presents a simple distance estimation for implicit polynomial fitting. It is computed as the height of a simplex built between the point and the surface (i.e., a triangle in 2-D or a tetrahedron in 3-D), which is used as a coarse but reliable estimation of the orthogonal distance. The proposed distance can be described as a function of the coefficients of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior . Hence, it can be used in any gradient-based optimization. In this paper, its use in a Levenberg-Marquardt framework is shown, which is particularly devoted for nonlinear least squares problems. The proposed estimation is a generalization of the gradient-based distance estimation, which is widely used in the literature. Experimental results, both in 2-D and 3-D data sets, are provided. Comparisons with state-of-the-art techniques are presented, showing the advantages of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2012b; ADAS @ adas @ Serial 1937  
Permanent link to this record
 

 
Author Hugo Berti; Angel Sappa; Osvaldo Agamennoni edit  openurl
  Title (up) Improved Dynamic Window Approach by Using Lyapunov Stability Criteria Type Journal
  Year 2008 Publication Latin American Applied Research Abbreviated Journal  
  Volume 38 Issue 4 Pages 289–298  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ BSA2008 Serial 1056  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
openurl 
  Title (up) Incremental Generalized Discriminative Common Vectors for Image Classification Type Journal Article
  Year 2015 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume 26 Issue 8 Pages 1761 - 1775  
  Keywords  
  Abstract Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-237X ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ DFD2015 Serial 2547  
Permanent link to this record
 

 
Author Angel Sappa; M.A. Garcia edit  openurl
  Title (up) Incremental Integration of Multiresolution Range Images Type Journal
  Year 2007 Publication The imaging science journal. Vol. 55, No. 3 pp. 127–139 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SaG2007d Serial 812  
Permanent link to this record
 

 
Author Katerine Diaz; Konstantia Georgouli; Anastasios Koidis; Jesus Martinez del Rincon edit  url
openurl 
  Title (up) Incremental model learning for spectroscopy-based food analysis Type Journal Article
  Year 2017 Publication Chemometrics and Intelligent Laboratory Systems Abbreviated Journal CILS  
  Volume 167 Issue Pages 123-131  
  Keywords Incremental model learning; IGDCV technique; Subspace based learning; IdentificationVegetable oils; FT-IR spectroscopy  
  Abstract In this paper we propose the use of incremental learning for creating and improving multivariate analysis models in the field of chemometrics of spectral data. As main advantages, our proposed incremental subspace-based learning allows creating models faster, progressively improving previously created models and sharing them between laboratories and institutions without requiring transferring or disclosing individual spectra samples. In particular, our approach allows to improve the generalization and adaptability of previously generated models with a few new spectral samples to be applicable to real-world situations. The potential of our approach is demonstrated using vegetable oil type identification based on spectroscopic data as case study. Results show how incremental models maintain the accuracy of batch learning methodologies while reducing their computational cost and handicaps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DGK2017 Serial 3002  
Permanent link to this record
 

 
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira edit   pdf
doi  openurl
  Title (up) Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal RAS  
  Volume 83 Issue Pages 312-325  
  Keywords Incremental scene reconstruction; Point clouds; Autonomous vehicles; Polygonal primitives  
  Abstract When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086, 600.076 Approved no  
  Call Number Admin @ si @OSS2016a Serial 2806  
Permanent link to this record
 

 
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira edit   pdf
url  openurl
  Title (up) Incremental texture mapping for autonomous driving Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal RAS  
  Volume 84 Issue Pages 113-128  
  Keywords Scene reconstruction; Autonomous driving; Texture mapping  
  Abstract Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086 Approved no  
  Call Number Admin @ si @ OSS2016b Serial 2912  
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa edit  doi
openurl 
  Title (up) Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 5 Pages 535–543  
  Keywords  
  Abstract This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DoS2009a Serial 1115  
Permanent link to this record
 

 
Author Ferran Diego; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title (up) Joint spatio-temporal alignment of sequences Type Journal Article
  Year 2013 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 15 Issue 6 Pages 1377-1387  
  Keywords video alignment  
  Abstract Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-9210 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DSL2013; ADAS @ adas @ Serial 2228  
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa edit   pdf
doi  isbn
openurl 
  Title (up) Learning a Part-based Pedestrian Detector in Virtual World Type Journal Article
  Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 5 Pages 2121-2131  
  Keywords Domain Adaptation; Pedestrian Detection; Virtual Worlds  
  Abstract Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number ADAS @ adas @ XVL2014 Serial 2433  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: