toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial (down) 1546  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  openurl
  Title Structure-preserving smoothing of biomedical images Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 9 Pages 1842-1851  
  Keywords Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography  
  Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ GHB2011 Serial (down) 1526  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras edit  openurl
  Title Aprendiendo a recrear la realidad en 3D Type Journal
  Year 2008 Publication UAB Divulga, Revista de divulgacion cientifica Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes spreading;ADAS Approved no  
  Call Number ADAS @ adas @ JSL2008b Serial (down) 1472  
Permanent link to this record
 

 
Author Joan Serrat; Ferran Diego; Felipe Lumbreras edit  openurl
  Title Los faros delanteros a traves del objetivo Type Journal
  Year 2008 Publication UAB Divulga, Revista de divulgacion cientifica Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SDL2008b Serial (down) 1471  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez edit   pdf
openurl 
  Title Road Detection Based on Illuminant Invariance Type Journal Article
  Year 2011 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 12 Issue 1 Pages 184-193  
  Keywords road detection  
  Abstract By using an onboard camera, it is possible to detect the free road surface ahead of the ego-vehicle. Road detection is of high relevance for autonomous driving, road departure warning, and supporting driver-assistance systems such as vehicle and pedestrian detection. The key for vision-based road detection is the ability to classify image pixels as belonging or not to the road surface. Identifying road pixels is a major challenge due to the intraclass variability caused by lighting conditions. A particularly difficult scenario appears when the road surface has both shadowed and nonshadowed areas. Accordingly, we propose a novel approach to vision-based road detection that is robust to shadows. The novelty of our approach relies on using a shadow-invariant feature space combined with a model-based classifier. The model is built online to improve the adaptability of the algorithm to the current lighting and the presence of other vehicles in the scene. The proposed algorithm works in still images and does not depend on either road shape or temporal restrictions. Quantitative and qualitative experiments on real-world road sequences with heavy traffic and shadows show that the method is robust to shadows and lighting variations. Moreover, the proposed method provides the highest performance when compared with hue-saturation-intensity (HSI)-based algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ AlL2011 Serial (down) 1456  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit   pdf
doi  openurl
  Title Learning photometric invariance for object detection Type Journal Article
  Year 2010 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 90 Issue 1 Pages 45-61  
  Keywords road detection  
  Abstract Impact factor: 3.508 (the last available from JCR2009SCI). Position 4/103 in the category Computer Science, Artificial Intelligence. Quartile
Color is a powerful visual cue in many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions that negatively affect the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, this approach may be too restricted to model real-world scenes in which different reflectance mechanisms can hold simultaneously.
Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is computed composed of both color variants and invariants. Then, the proposed method combines these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, our fusion method uses a multi-view approach to minimize the estimation error. In this way, the proposed method is robust to data uncertainty and produces properly diversified color invariant ensembles. Further, the proposed method is extended to deal with temporal data by predicting the evolution of observations over time.
Experiments are conducted on three different image datasets to validate the proposed method. Both the theoretical and experimental results show that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning, and outperforms state-of-the-art detection techniques in the field of object, skin and road recognition. Considering sequential data, the proposed method (extended to deal with future observations) outperforms the other methods
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ AGL2010c Serial (down) 1451  
Permanent link to this record
 

 
Author Daniel Ponsa; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title On-board image-based vehicle detection and tracking Type Journal Article
  Year 2011 Publication Transactions of the Institute of Measurement and Control Abbreviated Journal TIM  
  Volume 33 Issue 7 Pages 783-805  
  Keywords vehicle detection  
  Abstract In this paper we present a computer vision system for daytime vehicle detection and localization, an essential step in the development of several types of advanced driver assistance systems. It has a reduced processing time and high accuracy thanks to the combination of vehicle detection with lane-markings estimation and temporal tracking of both vehicles and lane markings. Concerning vehicle detection, our main contribution is a frame scanning process that inspects images according to the geometry of image formation, and with an Adaboost-based detector that is robust to the variability in the different vehicle types (car, van, truck) and lighting conditions. In addition, we propose a new method to estimate the most likely three-dimensional locations of vehicles on the road ahead. With regards to the lane-markings estimation component, we have two main contributions. First, we employ a different image feature to the other commonly used edges: we use ridges, which are better suited to this problem. Second, we adapt RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane markings to the image features. We qualitatively assess our vehicle detection system in sequences captured on several road types and under very different lighting conditions. The processed videos are available on a web page associated with this paper. A quantitative evaluation of the system has shown quite accurate results (a low number of false positives and negatives) at a reasonable computation time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ PSL2011 Serial (down) 1413  
Permanent link to this record
 

 
Author David Geronimo; Angel Sappa; Daniel Ponsa; Antonio Lopez edit   pdf
url  doi
openurl 
  Title 2D-3D based on-board pedestrian detection system Type Journal Article
  Year 2010 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 114 Issue 5 Pages 583–595  
  Keywords Pedestrian detection; Advanced Driver Assistance Systems; Horizon line; Haar wavelets; Edge orientation histograms  
  Abstract During the next decade, on-board pedestrian detection systems will play a key role in the challenge of increasing traffic safety. The main target of these systems, to detect pedestrians in urban scenarios, implies overcoming difficulties like processing outdoor scenes from a mobile platform and searching for aspect-changing objects in cluttered environments. This makes such systems combine techniques in the state-of-the-art Computer Vision. In this paper we present a three module system based on both 2D and 3D cues. The first module uses 3D information to estimate the road plane parameters and thus select a coherent set of regions of interest (ROIs) to be further analyzed. The second module uses Real AdaBoost and a combined set of Haar wavelets and edge orientation histograms to classify the incoming ROIs as pedestrian or non-pedestrian. The final module loops again with the 3D cue in order to verify the classified ROIs and with the 2D in order to refine the final results. According to the results, the integration of the proposed techniques gives rise to a promising system.  
  Address Computer Vision and Image Understanding (Special Issue on Intelligent Vision Systems), Vol. 114(5):583-595  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GSP2010 Serial (down) 1341  
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez; Angel Sappa; Thorsten Graf edit   pdf
url  doi
openurl 
  Title Survey on Pedestrian Detection for Advanced Driver Assistance Systems Type Journal Article
  Year 2010 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 32 Issue 7 Pages 1239–1258  
  Keywords ADAS, pedestrian detection, on-board vision, survey  
  Abstract Advanced driver assistance systems (ADASs), and particularly pedestrian protection systems (PPSs), have become an active research area aimed at improving traffic safety. The major challenge of PPSs is the development of reliable on-board pedestrian detection systems. Due to the varying appearance of pedestrians (e.g., different clothes, changing size, aspect ratio, and dynamic shape) and the unstructured environment, it is very difficult to cope with the demanded robustness of this kind of system. Two problems arising in this research area are the lack of public benchmarks and the difficulty in reproducing many of the proposed methods, which makes it difficult to compare the approaches. As a result, surveying the literature by enumerating the proposals one-after-another is not the most useful way to provide a comparative point of view. Accordingly, we present a more convenient strategy to survey the different approaches. We divide the problem of detecting pedestrians from images into different processing steps, each with attached responsibilities. Then, the different proposed methods are analyzed and classified with respect to each processing stage, favoring a comparative viewpoint. Finally, discussion of the important topics is presented, putting special emphasis on the future needs and challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GLS2010 Serial (down) 1340  
Permanent link to this record
 

 
Author Antonio Lopez; Joan Serrat; Cristina Cañero; Felipe Lumbreras; T. Graf edit   pdf
doi  openurl
  Title Robust lane markings detection and road geometry computation Type Journal Article
  Year 2010 Publication International Journal of Automotive Technology Abbreviated Journal IJAT  
  Volume 11 Issue 3 Pages 395–407  
  Keywords lane markings  
  Abstract Detection of lane markings based on a camera sensor can be a low-cost solution to lane departure and curve-over-speed warnings. A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue because of cast shadows, worn and occluded markings, variable ambient lighting conditions, for example. We focus on increasing detection reliability in two ways. First, we employed an image feature other than the commonly used edges: ridges, which we claim addresses this problem better. Second, we adapted RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane lines to the image features, based on both ridgeness and ridge orientation. In addition, the model was fitted for the left and right lane lines simultaneously to enforce a consistent result. Four measures of interest for driver assistance applications were directly computed from the fitted parametric model at each frame: lane width, lane curvature, and vehicle yaw angle and lateral offset with regard the lane medial axis. We qualitatively assessed our method in video sequences captured on several road types and under very different lighting conditions. We also quantitatively assessed it on synthetic but realistic video sequences for which road geometry and vehicle trajectory ground truth are known.  
  Address  
  Corporate Author Thesis  
  Publisher The Korean Society of Automotive Engineers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1229-9138 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ LSC2010 Serial (down) 1300  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: