|
Records |
Links |
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil |


|
|
Title |
Continuous head pose estimation using manifold subspace embedding and multivariate regression |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
6 |
Issue |
|
Pages |
18325 - 18334 |
|
|
Keywords |
Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression |
|
|
Abstract |
In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2169-3536 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018b |
Serial |
3091 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Hernandez; Lukas Schneider; P. Cebrian; A. Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan Carlos Moure |


|
|
Title |
Slanted Stixels: A way to represent steep streets |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
127 |
Issue |
|
Pages |
1643–1658 |
|
|
Keywords |
|
|
|
Abstract |
This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a fully convolutional network, which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118; 600.124 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HSC2019 |
Serial |
3304 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate |


|
|
Title |
Decremental generalized discriminative common vectors applied to images classification |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Knowledge-Based Systems |
Abbreviated Journal |
KBS |
|
|
Volume |
131 |
Issue |
|
Pages |
46-57 |
|
|
Keywords |
Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification |
|
|
Abstract |
In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118; 600.121;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2017a |
Serial |
3003 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Lopez; Gabriel Villalonga; Laura Sellart; German Ros; David Vazquez; Jiaolong Xu; Javier Marin; Azadeh S. Mozafari |


|
|
Title |
Training my car to see using virtual worlds |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
38 |
Issue |
|
Pages |
102-118 |
|
|
Keywords |
|
|
|
Abstract |
Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LVS2017 |
Serial |
2985 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Konstantia Georgouli; Anastasios Koidis; Jesus Martinez del Rincon |

|
|
Title |
Incremental model learning for spectroscopy-based food analysis |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Chemometrics and Intelligent Laboratory Systems |
Abbreviated Journal |
CILS |
|
|
Volume |
167 |
Issue |
|
Pages |
123-131 |
|
|
Keywords |
Incremental model learning; IGDCV technique; Subspace based learning; IdentificationVegetable oils; FT-IR spectroscopy |
|
|
Abstract |
In this paper we propose the use of incremental learning for creating and improving multivariate analysis models in the field of chemometrics of spectral data. As main advantages, our proposed incremental subspace-based learning allows creating models faster, progressively improving previously created models and sharing them between laboratories and institutions without requiring transferring or disclosing individual spectra samples. In particular, our approach allows to improve the generalization and adaptability of previously generated models with a few new spectral samples to be applicable to real-world situations. The potential of our approach is demonstrated using vegetable oil type identification based on spectroscopic data as case study. Results show how incremental models maintain the accuracy of batch learning methodologies while reducing their computational cost and handicaps. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGK2017 |
Serial |
3002 |
|
Permanent link to this record |
|
|
|
|
Author |
Adrien Gaidon; Antonio Lopez; Florent Perronnin |

|
|
Title |
The Reasonable Effectiveness of Synthetic Visual Data |
Type |
Journal Article |
|
Year |
2018 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
126 |
Issue |
9 |
Pages |
899–901 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GLP2018 |
Serial |
3180 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; Liang Xiao; Antonio Lopez |


|
|
Title |
Self-supervised Domain Adaptation for Computer Vision Tasks |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
7 |
Issue |
|
Pages |
156694 - 156706 |
|
|
Keywords |
|
|
|
Abstract |
Recent progress of self-supervised visual representation learning has achieved remarkable success on many challenging computer vision benchmarks. However, whether these techniques can be used for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases. Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within our method, consisting of prediction layer alignment and batch normalization calibration. The experimental results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing self-supervision as a new alternative for reaching domain adaptation. The code is available at this link. https://github.com/Jiaolong/self-supervised-da. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ XXL2019 |
Serial |
3302 |
|
Permanent link to this record |
|
|
|
|
Author |
Zhijie Fang; Antonio Lopez |


|
|
Title |
Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation |
Type |
Journal Article |
|
Year |
2019 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
21 |
Issue |
11 |
Pages |
4773 - 4783 |
|
|
Keywords |
|
|
|
Abstract |
Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists is critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, thus, should be taken into account by systems providing any level of driving assistance, from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this paper, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow traffic rules to indicate future maneuvers with arm signals. In the case of pedestrians, no indications can be assumed. Instead, we hypothesize that the walking pattern of a pedestrian allows to determine if he/she has the intention of crossing the road in the path of the ego-vehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this paper, we show how the same methodology can be used for recognizing pedestrians and cyclists' intentions. For pedestrians, we perform experiments on the JAAD dataset. For cyclists, we did not found an analogous dataset, thus, we created our own one by acquiring and annotating videos which we share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FaL2019 |
Serial |
3305 |
|
Permanent link to this record |
|
|
|
|
Author |
Akhil Gurram; Ahmet Faruk Tuna; Fengyi Shen; Onay Urfalioglu; Antonio Lopez |


|
|
Title |
Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
23 |
Issue |
8 |
Pages |
12738-12751 |
|
|
Keywords |
|
|
|
Abstract |
Depth information is essential for on-board perception in autonomous driving and driver assistance. Monocular depth estimation (MDE) is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Usually, this GT is acquired at training time through a calibrated multi-modal suite of sensors. However, also using only a monocular system at training time is cheaper and more scalable. This is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. In this paper, we perform monocular depth estimation by virtual-world supervision (MonoDEVS) and real-world SfM self-supervision. We compensate the SfM self-supervision limitations by leveraging virtual-world images with accurate semantic and depth supervision and addressing the virtual-to-real domain gap. Our MonoDEVSNet outperforms previous MDE CNNs trained on monocular and even stereo sequences. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GTS2021 |
Serial |
3598 |
|
Permanent link to this record |
|
|
|
|
Author |
Gabriel Villalonga; Antonio Lopez |


|
|
Title |
Co-Training for On-Board Deep Object Detection |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
|
Issue |
|
Pages |
194441 - 194456 |
|
|
Keywords |
|
|
|
Abstract |
Providing ground truth supervision to train visual models has been a bottleneck over the years, exacerbated by domain shifts which degenerate the performance of such models. This was the case when visual tasks relied on handcrafted features and shallow machine learning and, despite its unprecedented performance gains, the problem remains open within the deep learning paradigm due to its data-hungry nature. Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes which localize class instances (i.e. objects) within the training images. Thus, object detection is one of such tasks for which human labeling is a major bottleneck. In this article, we assess co-training as a semi-supervised learning method for self-labeling objects in unlabeled images, so reducing the human-labeling effort for developing deep object detectors. Our study pays special attention to a scenario involving domain shift; in particular, when we have automatically generated virtual-world images with object bounding boxes and we have real-world images which are unlabeled. Moreover, we are particularly interested in using co-training for deep object detection in the context of driver assistance systems and/or self-driving vehicles. Thus, using well-established datasets and protocols for object detection in these application contexts, we will show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ViL2020 |
Serial |
3488 |
|
Permanent link to this record |