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Intention Recognition of Pedestrians and Cyclists by 2D Pose
Estimation

Zhijie Fang, Antonio M. López.

Abstract—Anticipating the intentions of vulnerable road users
(VRUs) such as pedestrians and cyclists is critical for performing
safe and comfortable driving maneuvers. This is the case for
human driving and, thus, should be taken into account by systems
providing any level of driving assistance, from advanced driver
assistant systems (ADAS) to fully autonomous vehicles (AVs).
In this paper, we show how the latest advances on monocular
vision-based human pose estimation, i.e. those relying on deep
Convolutional Neural Networks (CNNs), enable to recognize the
intentions of such VRUs. In the case of cyclists, we assume that
they follow traffic rules to indicate future maneuvers with arm
signals. In the case of pedestrians, no indications can be assumed.
Instead, we hypothesize that the walking pattern of a pedestrian
allows to determine if he/she has the intention of crossing the
road in the path of the ego-vehicle, so that the ego-vehicle must
maneuver accordingly (e.g. slowing down or stopping). In this
paper, we show how the same methodology can be used for
recognizing pedestrians and cyclists’ intentions. For pedestrians,
we perform experiments on the JAAD dataset. For cyclists, we
did not found an analogous dataset, thus, we created our own
one by acquiring and annotating videos which we share with the
research community. Overall, the proposed pipeline provides new
state-of-the-art results on the intention recognition of VRUs.

Index Terms—Autonomous Driving, ADAS, Computer Vision,
Pedestrians Intention Recognition, Cyclists Intention Recognition

I. INTRODUCTION

EVEN there is still room to improve the detection and
tracking of vulnerable road users (VRUs), i.e. pedestrians

and cyclists, the state-of-the-art is sufficiently mature [1], [2],
[3], [4], [5], [6], [7], [8] as to allow for increasingly focus
more on related higher level tasks, which are crucial in terms
of assisted and automated driving safety and comfort.

In particular, knowing the intention of a pedestrian to cross
the road in front of the ego-vehicle, i.e. before the pedestrian
has actually entered the road, would allow the vehicle to warn
the driver or automatically perform smoother maneuvers more
respectful with pedestrians; it even significantly reduces the
chance of injury requiring hospitalization when a vehicle-to-
pedestrian crash is not fully avoidable [9]. The idea can be
illustrated with the support of Fig. 1. We can see two pedestri-
ans, one apparently stopped near a curb and the other walking
towards the same curb. Just looking at the location of the
(yellow) bounding boxes (BBs) that frame these pedestrians,
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Fig. 1: Our focus: are the pedestrians going to cross?

Fig. 2: Cyclist arm signals, left to right: Turn Left, Turn Right,
Alternative Turn Right and Stop.

we would say that they are not in the path of the vehicle at the
moment. However, we would like to know what is going to
happen next: is the stopped pedestrian suddenly going to cross
the road? is the walking pedestrian going to cross the road
without stopping?; in the affirmative cases, the vehicle could
start to slow down already for a safer maneuver, increasing the
comfort of the passengers and the confidence of the pedestrians
(especially relevant for autonomous vehicles).

Recognizing the motion intentions of cyclists is also highly
relevant since many times the ego-vehicle will need to overtake
them. While we cannot assume that pedestrians will explicitly
indicate their intentions, for the cyclists we can exploit traffic
rules. In particular, cyclists must indicate future left/right turns
and stop maneuvers with arm signals (see Fig. 2).

In this paper, we explore the idea of using 2D pose
estimation from monocular images as core information to
recognize the intentions of both pedestrians and cyclists. In
fact, we already addressed the pedestrian crossing/not-crossing
classification (C/NC) task by relying on image-based 2D pose
estimation [10], [11]. The proposed method shows state-of-the-
art results and, in contrast to previous approaches (see Sect.
II), it does not require information such as stereo, optical flow,
or ego-motion compensation. In the most recent work [11],
we reported results for the (Joint Attention for Autonomous
Driving–JAAD) dataset [12], which allows to address the
C/NC classification task in naturalistic driving conditions.
Moreover, since recently CNN-based features have been used
to address the C/NC classification task in JAAD [13], we
additionally compared our pose-estimation-based features with
CNN-based ones, the former clearly outperforming the latter.

Overall, [11] reported the new state-of-the-art baseline for
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JAAD. In this paper, first we complement this work by
analysing the effect of obtaining noisy 2D skeletons, and we
report also the features that the C/NC classifier considers most
relevant. In addition, we show how the same methodology can
be used to recognize cyclist arm signals; which also required to
collect and annotate a specific dataset presented in this paper
too. As in JAAD, our cyclist arm sign recognition (CASR)
dataset was collected with a consumer-graded camera. We
have annotated 219 arm signal actions on videos of approx-
imately 10 seconds each, containing one or two actions per
video. We also annotated 10 additional Youtube videos. CASR
is publicly available in https://github.com/VRU-intention/casr.

Sect. II reviews the related work. Sect. III presents our
proposal to recognize VRU intentions. Sect. IV and Sect. V
detail the experiments, results, and derived conclusions. We
present CASR in Sect. V. Finally, Sect. VI summarizes the
work and its possible continuations.

II. RELATED WORK

C/NC classification started as a pedestrian path predic-
tion problem; addressed by relying on pedestrian dynamic
models for estimating pedestrian future location, speed and
acceleration [14], [15]. However, these models are difficult to
adjust and for robustness require to rely on dense stereo data,
dense optical flow and ego-motion compensation. Intuitively,
methods like [15] implicitly try to predict how the silhouette
of a tracked pedestrian evolves over time. In fact, [16] uses a
stereo-vision system and ego-motion compensation to explic-
itly assess the silhouette of the pedestrians (others rely on 360◦

LIDAR [17]). Note that, while our method will be applied in
JAAD because only relies on a monocular stream of images,
these other methods cannot be applied due to the lack of stereo
information and vehicle data for ego-motion compensation.

On-board head and body orientation approximations have
been also proposed to estimate pedestrian intentions, both from
monocular [18] and stereo [19], [20] images with ego-motion
compensation. However, it is unclear how we actually can use
these orientations to provide intention estimation. Moreover,
the experiments reported in [20] suggest that head detection
is not useful for the C/NC classification task.

These mentioned vision-based works relied on Daimler’s
dataset. By using an AlexNet-based CNN trained on JAAD,
[13] verified whether full body appearance improves the results
on the C/NC classification task compared to analyzing only
the sub-window containing either the head or the lower body.
Conclusions were similar, i.e. specifically focusing on legs or
head does not seem to bring better performance.

In fact, a lack of information about the pedestrian’s posture
and body movement results in a delayed detection of the
pedestrians changing their crossing intention [21]. In line
with this suggestion, in [10] we relied on a state-of-the-
art 2D pose estimation method that operates in still images
[22]. In particular, following a sliding time-window approach,
accumulating estimated pedestrian skeletons over-time (see
Fig. 3) and features on top of these skeletons (see Fig. 8),
we obtained state-of-the-art results for the C/NC classification
task in Daimler’s dataset; which is remarkable since we only

relied on a monocular stream of frames, neither on stereo, nor
on optical flow, nor on ego-motion compensation. In this paper,
we augment our study to the more challenging JAAD dataset
by complementing the 2D pose estimation with state-of-the-
art pedestrian detection and tracking. Moreover, we compare
the use of skeleton-based features with CNN-appearance-based
ones as suggested in [23] for the generic task of human action
recognition. We will see how the former bring more accuracy
than the latter. We also report time-to-event results.

Pedestrian intention recognition is reviewed in [24] for
technologies such as LiDAR and wifi. Compared to pedestrian
intention recognition, recognizing cyclist arm signals has re-
ceived less attention. One reason may be the lack of publicly
available datasets to assess this task. After [3], [5], it was
publicly released a large dataset focusing on cyclists, termed
as Tsinghua-Daimler Cyclist Benchmark dataset (TDCB);
however, acquired data and annotations are intended to support
detection and orientation estimation tasks, but not cyclist arm
signal recognition. In [6], the ground truth of TDCB was
extended with wheel annotation for the case of bikes in side
view, still to support cyclist detection. Thus, in this paper, we
introduce our Cyclist Arm Signal Recognition dataset (CASR)
containing 40,218 frames organized as short videos containing
a cyclist arm signal each, in total, 219 annotated actions.
For assessing generalization we also annotated 10 additional
actions from Youtube, corresponding to 1,636 frames.

Using a stereo rig, in [8], [25] it is detected whether the
left arm of a cyclist observed from the back is up or down,
which is used as a context cue within a path prediction module.
However, an isolated accuracy analysis of such up/down arm
classification is not performed. In order to perform such a
classification, the disparity map computed from stereo image
pairs is used to produce a binary mask of each detected cyclist,
and template matching is applied to determine if the mask
correlates with a left arm up or down. In particular, the scores
of matching against multiple templates, the disparity values,
and the image intensities, are used as core information to
build a Naive Bayesian Classifier with uniform prior, which is
responsible for the desired up/down arm classification. In this
paper, we do not assume stereo data and we not only account
for the cyclist signal to turn left, but also to turn right (two
types as shown in Fig. 2) and stopping. Moreover, we apply
exactly the same procedure for pedestrian intention recognition
and for cyclist arm signal recognition. On the other hand, the
classification output of our method could be also integrated as
a cue for the path prediction module of [8], [25].

Other concurrent works to ours, have been recently pre-
sented also exploring the use of skeleton-based features. In
[26], Gaussian processes operating on fitted human skeletons
are used to recognize four types of actions, namely walking,
stopping, starting, and standing. Results on naturalistic pub-
licly available driving datasets (i.e. such as JAAD) are not
reported and cyclist arm sign recognition is not addressed. In
[27], fitted skeletons are analyzed along time using a long
short-term memory (LSTM) for detecting actions such as
crossing, stopping, starting, turning, and walking along. In this
case, sequences in the wild are used but, up to the best of our
knowledge, they are not publicly available so it is difficult

https://github.com/VRU-intention/casr
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Fig. 3: 2D skeleton fitting on 14 consecutive frames of one JAAD sequence, which roughly correspond to half a second.

to compare them with JAAD for instance. On the other hand,
cyclist arm sign recognition is not addressed. As an aside note,
even we have not included in this paper, we also experimented
with LSTMs but the obtained results were not better than the
ones that we will report in this paper. In [28], the main focus
is to propose a human pose extraction method, the further
analysis of how to use it for automatic action recognition
is not considered, only a manually guided visual analysis is
performed and, therefore, no quantitative results are reported.

Finally, we would like to mention US Patent [29]. In the
described approach, arm signal recognition is based on LiDAR
data, while we rely only on monocular vision. [29] does not
report results on any specific dataset; however, we think this
LiDAR-based approach and ours can be complementary.

III. METHOD
We need to detect pedestrians, track them, adjust a skeleton

for each one (Fig. 3), and apply a C/NC classifier that
relies on skeleton-based features (Fig. 8). Cyclist arm signal
classification follows analogous steps.

a) Detection: we can use a state-of-the-art pedes-
trian/cyclists (object) detector as long as it only requires a
single RGB image as input, and returns a set of bounding
boxes (BBs), each one framing a pedestrian/cyclist (by cyclist,
we mean that the BB can frame only the rider or both the rider
and the bike). Due to their popularity, here we have considered
Faster R-CNN [2] and Mask R-CNN [30], which can be found
in both the Detectron [31] and TensorPack [32] frameworks.

b) Tracking: we selected [7], an efficient state-of-the-art
multiple object tracker, with publicly available code. It uses
the following state for a detected object: (u, v, λ, h, ẋ, ẏ, λ̇, ḣ);
where (u, v) is the central pixel of the BB, λ its aspect ratio,
h its height, while ẋ, ẏ, λ̇, and ḣ are the respective derivatives
over time. These variables are updated by Kalman filtering.
For data association, it is used a cosine distance on top of
CNN features (trained on a large-scale person re-identification
dataset [33], thus, especially useful for tracking pedestrians
and cyclists) which scores the degree of visual similarity
between BB detections and predictions. A detection which
does not have a high matching score with some prediction
is pre-tracked; if the lack of matching holds during several
consecutive frames, the track is consolidated as corresponding
to a new detected object. Predictions which do not have a high
matching score with a new detection during several frames are
considered as disappeared objects (ended tracks).

c) Skeleton fitting (pose estimation): Given the good
results obtained in [10], we apply the CNN-based pose esti-
mation method proposed in [22], which has publicly available
code. This method can operate in still monocular images

and has been trained on the Microsoft COCO 2016 keypoints
dataset [34]. Thus, a priori it could be effective to fit the pose
of both pedestrians and cyclists. In fact, this method is sup-
posed to perform both human detection and pose estimation.
However, as we will comment in Sect. IV, for our problem it
was more effective to rely on a detector-tracker pipeline and
then run the pose estimation module only inside the tracked
BBs, obtaining in that way the desired skeletons (see Fig. 3).

d) Intention classification: Focusing on the C/NC clas-
sification task, in [10] we extracted features from fitted pedes-
trian skeletons and use them as input to a shallow classifier.
Fig. 4 highlights with stars the 9 keypoints we found as
most stable, which correspond to the legs and the shoulders.
These are highly relevant keypoints since the legs execute
continue/start walking or stopping actions; while keypoints
from shoulders and legs inform about global body orientation.
From the selected keypoints we compute features. First, we
perform a normalization of keypoint coordinates according to
a factor h proportional to the pedestrian height, determined
as the vertical distance from the top-most to the bottom-
most keypoints (their location depends on the skeleton fitting).
Then, different features (conveying redundant information) are
computed by considering distances and relative angles between
pairs of keypoints, as well as triangle angles induced by triplets
of keypoints (see Fig. 8). In total we obtain 396 features.
Since we concatenate features during the last T frames, our
feature vector has dimension 396T . Finally, we use a Random
Forest (RF) classifier, which directly provides a probability for
a meaningful thresholding to perform the C/NC classification.
On the other hand, the pose of a cyclist is rather different
than the pose of a pedestrian walking or standing. However,
we hypothesize that, for performing arm signal classification,
we can rely on the same keypoints than for C/NC classification
plus the two additional keypoints from each arm (elbow and
wrist, see Fig. 4). Therefore, for each cyclist we use 13
keypoints, which turns out in 1170 features per frame, thus,
1170T for a temporal (sliding) window of T frames.

IV. PEDESTRIAN INTENTION EXPERIMENTS

A. Dataset

First publicly available dataset for research on detecting
pedestrian intentions is from Daimler [14]. It contains 68 short
sequences (9,135 frames in total) acquired in non naturalistic
conditions and shows a single pedestrian per video, where the
pedestrian performs pre-determined actions. More recently, it
has been publicly released the Joint Attention for Autonomous
Driving (JAAD) dataset [12], acquired in naturalistic condi-
tions and annotated for detecting C/NC actions. It contains
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Fig. 4: Keypoints used for detecting the intentions of pedestri-
ans (left) and cyclists (right). In the former case, 9 keypoints
that are used out of the fitted skeleton to extract 396 features.
In the later case, 13 keypoints are used to extract 1170 features.

346 videos (most of them 5-10 seconds long) recorded on-
board with a monocular system, running at 30 fps with a
resolution of 1920 × 1080 pixels. Videos include both North
America and Eastern Europe scenes. Overall, JAAD includes
≈ 88,000 frames with 2,624 unique pedestrians labeled with
≈ 390,000 BBs. Moreover, occlusion tags are provided for
each BB. Where ≈ 72,000 (18%) BBs are tagged as partially
occluded and ≈ 46,000 (11%) as heavily occluded. Pedestrian
tracks are also provided. In addition, although we are not using
it in this paper, JAAD contains also context information (traffic
signs, street width, etc.) that we may use in further studies to
complement purely pedestrian-based information.

B. Evaluation protocol

In [13], JAAD was used for evaluating a C/NC classifier.
However, neither is explained how JAAD was split in training
and testing, nor the code is available. Here we use the first
250 videos of JAAD for training and the rest for testing. We
have re-labeled as C the crossing labels of JAAD, as well
as the labels in {clear-path, moving-fast, moving-slow, slow-
down, speed-up} assigned to a pedestrian with lateral motion
direction; the rest JAAD labels are re-labeled as NC.

1) Training: While pedestrian detection based on the skele-
ton fitting algorithm that we use here [22] is possible, in our
initial experiments we determined that its detection accuracy in
JAAD was worse than using Faster R-CNN since the latter was
fine-tuned from the available pedestrian BB annotations (fine-
tuning the CNN of [22] would require body level annotations,
not available in JAAD). In particular, we used the Faster R-
CNN implementation released in [35], following the same
Faster R-CNN settings but using {8, 16, 32, 64} as anchors
and 2.5 as BB aspect ratio (i.e. pedestrian oriented). This
Faster R-CNN is based on VGG16 CNN architecture. For fine-
tuning we perform 110,000 iterations (remind that an iteration
consists of a batch of 256 regions from the same image, and
that input images are vertically mirrored to double the number
of training samples). Regarding learning rate, we start with
0.001 and decrease the value to 0.0001 after 80,000 iterations.

For training the C/NC classifier we rely on well-seen pedes-
trians and we balance the number of samples of the C and NC
classes. Thus, we only consider pedestrian training samples
with a minimum BB width of 60 pixels and no occlusion.

Fig. 5: C/NC classification. The ground truth label is indicated
with ”C” or ”NC”; In green if the prediction agrees with the
ground truth, red otherwise. Pedestrians are framed with two
BBs: detection and tracking, the latter with the track ID. The
estimated pedestrian skeleton is also shown. When annotated,
time-to-event (TTE) is also shown in frame units. Negative
TTE values mean that the event happened before this frame,
while positive values indicate that it will happen after.

Moreover, for a tracked pedestrian, these conditions must hold
over more than T frames, since we need to concatenate last T
frames for the C/NC classification. Thus, from tracks longer
than T frames we can obtain different training samples by
applying a temporal sliding window of size T.

For each tracked pedestrian, the C/NC label assigned to a
sequence of length T corresponds to the label in the most
recent frame (i.e. the frame in which the C/NC decision must
be taken). We set T=14 for JAAD (i.e., following [10], a value
roughly below 0.5 seconds). Since we are in training time,
here we are referring to the ground truth tracks provided in
JAAD. For completeness, we also test the case T=1; meaning
that we only train with the last frame of the same sequences
used for the T=14 case. Overall, there are 8,677 sequences
of length T=14 and NC label, while there are 36,253 with C
label; thus, in the latter case we randomly take only 8,677
among those 36,253 possible. Accordingly, we fit the pose
estimation-based skeleton and compute the C/NC features for
8,677 C and 8,677 NC samples (in a set of experiments for
T=14, in another for T=1). These features are then used as
input for the scikit-learn [36] function GridSearchCV; which
is parameterized for training a Random Forest (RF) classifier
using 5-fold cross-validation with the number of trees running
on {100, 200, 300, 400, 500} and maximum depth running
on {7, 15, 21, 30}. The optimum RF in terms of accuracy
corresponds to 400 trees and a maximum depth of 15, but
we noted that all configurations provided similar accuracy.

Since we use Faster R-CNN, we can compare skeleton-
based features with CNN-based ones, as is common in general
action recognition literature [23]. Accordingly, we apply the
following procedure. For all training images we run the
VGG16 obtained during Faster R-CNN fine-tuning. Then, for
the same tracks mentioned before, we replace the skeleton-
based features by the fc6 layer features inside the tracked
pedestrian BBs. Note that (Sect. III) we have 396T skeleton-
based features and 4096T fc6-based ones for each sample
reaching RF training. In terms of RF parameter optimization
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(number of trees and maximum depth), CNN-based features
reported similar accuracy as was the case for skeleton-based
ones. Therefore, we set the same parameters, i.e. 400 trees
and a maximum depth of 15. We also combine skeleton and
CNN-based features using the same RF parameters.

2) Testing: In [13], evaluations are single frame (T=1) and
only pedestrians with an action label are considered (mapped
to C/NC here). When designing our experiments, we have seen
that not all pedestrians of JAAD are annotated with a BB.
Thus, when we run the detection and tracking modules, we
are detecting and tracking some pedestrians which do not have
the required ground truth information (BB, etc.). So, in order
to follow a similar approach to [13], we do not consider these
cases for quantitative evaluation. However, they are present
in the qualitative evaluation (e.g. see the videos provided as
supplementary material). Overall, we ensure that T=1 and
T=14 experiments are applied at the same tracked pedestrians
at the same frames, performing a fair comparison.

When detecting pedestrians with Faster R-CNN we use
the default threshold 5% and overlapping of 30% for non-
maximum suppression. For starting a new track, a pedestrian
must be detected in 3 consecutive frames (i.e. 0.1 seconds);
while for ending a track there must be no new matched
observations (detections) during 30 frames (i.e. 1 second). For
pose estimation (skeleton fitting) we use 3 scales; in particular,
{1, (1 − 0.15), (1 − 0.15 ∗ 2)}. For the C/NC classifier, we
threshold in 0.5 the probability value provided by the RF.

We assess accuracy according to the widespread definition
Acc = (TP + TN)/(P + N), where P stands for total pos-
itives (here ”C”), N are the total negatives (here ”NC”), and
TP and TN the rightly classified positives and negatives (C
and NC right classifications). According to the testing protocol
we have defined, we found P = 17045 and N = 5161,
therefore, Acc could be bias towards ”C” results. In order to
avoid this, we select P = N cases randomly. Thus, Acc will
be based on 10,322 testing decisions.

As in [10], we are interested in time-to-event (TTE) results
for the critical case of crossing (C). However, JAAD is not
annotated for this. Thus, we added TTE information to 9 keep-
walking-to-cross sequences, and to 14 start-walking-to-cross
ones. TTE = 0 is the when the event of interest happens. For
keep-walking-to-cross, it is the first frame at which the trunk of
the walking pedestrian is over the curbside. For start-walking-
to-cross, it is the frame at which the stopped pedestrian starts
moving a leg forward. Positive TTE values correspond to
frames before the event, negative values to frames after the
event. Fig. 5 shows a result example where we can see TTE
values for different pedestrians that are correctly classified
as crossing (the supplementary videos have more examples).
With TTE we provide two different plots, intention probability
vs TTE, and predictability vs TTE. With the former we can
see how many frames we can anticipate the pedestrian action.
Since there are several testing sequences per intention, mean
and standard deviation are plotted. Predictability plots show a
normalized measurement of how feasible is to detect the action
under consideration for each TTE value. Predictability zero
indicates that we cannot detect the action, while predictability
one means that we can.

TABLE I: Classification accuracy (Acc) in JAAD. SKLT refers
to our skeleton-based features, while CNN (fc6) are features
from a VGG16 fine-tuned in JAAD (see main text). We have
included here the results reported in [13], where CNN features
are based on a non-fine-tuned AlexNet and Context refer
to features of the environment, not of the pedestrian itself.
Moreover, results for 20% and 30% noise in the keypoints is
also reported for the SKLT case (se main text for details).

Method T features Acc Acc Acc
20% 30%

[13] 1 CNN 0.39
[13] 1 CNN&Context 0.63

Ours 1 CNN(fc6) 0.68
Ours 1 SKLT 0.80 0.77 0.73
Ours 1 CNN(fc6) + SKLT 0.81

Ours 14 CNN(fc6) 0.70
Ours 14 SKLT 0.88 0.86 0.83
Ours 14 CNN(fc6) + SKLT 0.87

C. Results

Table I reports accuracy results. We have included those re-
ported in [13]; however, our results are not directly comparable
since it is unclear which frames were used for training and
which ones for testing. The paper mentions that heavily oc-
cluded pedestrians are not considered for testing. In our exper-
imental testing we do not exclude pedestrians due to occlusion.
Moreover, we also report TTE information. However, we still
found interesting to include the results in [13] since the paper
is based on CNN features and T=1. In particular, the authors
train a walking/standing classifier and another looking/not-
looking (pedestrian-to-car) classifier, both classifiers are based
on a modified AlexNet CNN. The classification score of these
classifiers is not used for final C/NC decision. Instead, the
fc8 layer of both are used as features to perform a final
C/NC based on a Linear-SVM adjusted in such a CNN-based
feature space. It is also proposed to add contextual information
captured by a place-classification style AlexNet.

For a fixed T, Table I shows that the skeleton-based features
(SKLT) outperform those based on CNN fc6 layer. Combining
SKLT and fc6 does not significantly improves accuracy of
SKLT. We can see also that T=14 outperforms T=1, showing
the convenience of integrating different frames. Fig. 6 shows
how the system is stable at predicting that a walking pedestri-
ans will keep moving from a sidewalk and eventually crossing
the curbside appearing in front of the vehicle. We can see
also that we can predict (predictability>0.8) that a standing
pedestrian will cross the curbside around 8 frames after he/she
starts to move, which in JAAD is around 250ms.

Looking in more detail to the results, we find situations that
need to be taken into account as future work. For instance, in
Fig. 7 there is a ”C” accounted as error (red). Indeed, the
pedestrian is crossing the road, but not the one intersecting
the path of the ego-vehicle. So in the evaluation it should be
probably accounted as right. On the contrary, in Fig. 7 the
system classifies as ”NC” a pedestrian which is not crossing
the road, but in fact is walking along the road, in front of
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TABLE II: For T=1, top-25 most relevant pedestrian skeleton-
based features from left-to-right and top-to-bottom.

Θ(4, 12, 3) Θ(4, 11, 3) Θ(8, 4, 9) Θ(4, 8, 3) Θ(3, 10, 5)
Θ(8, 12, 10) Θ(12, 11, 13) Θ(3, 12, 5) Θ(4, 13, 3) Θ(3, 8, 5)
Θ(4, 10, 3) Θ(8, 5, 9) Θ(8, 3, 9) Θ(3, 11, 5) Θ(12, 10, 13)
Θ(4, 9, 3) Θ(10, 8, 12) Θ(3, 9, 5) Θ(8, 10, 12) Θ(3, 8, 9)
Θ(3, 9, 8) Θ(3, 13, 5) Θ(9, 13, 11) Θ(12, 9, 13) Θ(12, 8, 13)

TABLE III: Analogous to Table II for T=14.

Θ7(4, 9, 3) Θ3(4, 12, 3) Θ8(4, 13, 3) Θ9(4, 12, 3) Θ2(4, 12, 3)
Θ6(4, 9, 3) Θ12(4, 8, 3) Θ9(4, 10, 3) Θ4(4, 10, 3) Θ1(4, 9, 3)
Θ4(4, 8, 3) Θ8(4, 12, 3) Θ6(4, 8, 3) Θ8(4, 10, 3) Θ6(4, 13, 3)
Θ6(8, 10, 9) Θ1(4, 12, 3) Θ4(3, 8, 5) Θ2(4, 8, 3) Θ3(4, 8, 3)
Θ7(4, 8, 3) Θ4(4, 9, 3) Θ7(4, 10, 3) Θ5(4, 11, 3) Θ8(4, 9, 3)

the car. Now this situation is accounted as right, but probably
should be accounted as wrong. On the other hand, in this
case we can just use location-based reasoning to know that
the pedestrian is in a dangerous place, it is not a problem
of predicting the action anymore (as the C/NC case). It is
worth also mentioning that we have observed that walking
in parallel to the car motion direction, tends to be properly
classified as NC; however, more annotations are required to
provide a reasonable quantitative analysis.

In order to evaluate the robustness of the method, we ran
an equivalent set of experiments for the SKLT case, where we
added random noise to the keypoints of the fitted skeleton in
testing time. In particular,independently for each coordinate
of each keypoint, we added Gaussian noise with zero mean
and standard deviation s which, following [37], is set as a
percentage over the distance to the closest keypoint. This
is shown in Table I for percentages of 20% and 30%. As
expected, accuracy decreases a few for 20% and more for
30%, being T=14 is more robust to noise than T=1.

Finally, we assess the most important features for the RF
classifier. In Fig. 8 we assign an ID to the keypoints of a
fitted skeleton either used for pedestrian or cyclist intention
recognition. The visualized naming scheme defines angles
(Θ(·, ·),Θ(·, ·, ·)) and lengths (L(·, ·),Lx(·, ·),Ly(·, ·)). Since
we have evaluated both T=1 and T=14, in the latter case we
also add a super-index to indicate from which relative frame
index (i.e. in {1, .., 14}) comes the feature. Tables II-III show
the top-25 more important features for T=1 (top ∼ 6%) and
T=14 (top ∼ 0.5%), respectively. We see how all are based
on 3-keypoint angles, mostly connecting either shoulder and
legs, or shoulder and waist; thus, capturing global pose. For
T=14, only one feature appears after frame 9 (∼ 300ms); thus,
favoring intention prediction in a short time.

V. CYCLIST INTENTION EXPERIMENTS
A. Dataset

There are large datasets for cyclist detection such as the
already mentioned TDCB [3], [8]. However, it does not include
samples with annotations to assess arm signal recognition.
Therefore, in this paper, we introduce our Cyclist Arm Signal
Recognition dataset (CASR), consisting of 40,218 frames.
Moreover, for assessing generalization we also annotated ad-
ditional videos from YouTube, consisting of 1,626 frames. For

TABLE IV: Cyclist arm signals in CASR and some YT videos.

Turn Left Turn Right Stop
Cyclist 1 24 38 34
Cyclist 2 16 24 30
Cyclist 3 6 12 26
Cyclist 4 2 3 4

Total CASR 48 77 94
Total YouTube 6 4 0

CASR we followed a similar approach than JAAD authors. In
particular, we attached a GoPro camera to the windshield of a
car, forward facing the road ahead. We set the acquisition to
RGB images at 30 fps and an 1920× 1080 resolution.

We asked four persons to drive their bikes inside our
university campus, and they were instructed to ride around
as they wish but using arm signals when required. Sometimes
they wear helmet, sometimes not. Sometimes they carry a bag
in their back, sometimes not. YouTube videos are also based on
a dash cam facing the road. Table IV summarizes the number
of actions (cyclist arm signals) that we have annotated. Note
that CASR includes 219 annotated actions, and YouTube 10.
Actions have been organized as short videos of around 10
seconds with a single cyclist, where the frame starting an
action and the frame ending this action are annotated. The
videos of CASR mostly show one action and sometimes two
actions because they were indicated in a continuous way by the
cyclists, and in this case we did not split the video. In addition
to the frame level action annotations, we have annotated the
2D BBs framing the cyclists too. Moreover, the videos where
selected so that in most of them no pedestrians are included;
thus, ready to focus on cyclist arm signal recognition. In some
cases, however, there can be some pedestrians but we do not
annotate his/her BB so that they are ignored during training
and testing. Overall, CASR’s content is analogous to the first
deployed dataset for pedestrian intention recognition [14], but
including much more annotated frames (68 actions within
9,135 in [14], 219 actions within 40,218 frames here).

Note how action annotations are vehicle-centric here, in-
stead of cyclist-centric. When the ego-vehicle follows the
cyclist, they are the same. However, when the cyclist and the
ego-vehicle move in opposite directions, we annotated as left-
turn what for the cyclist is an indication of right-turn, and vice
versa. The reason, is that for the vehicle what matters is the
direction that the cyclist is going to take as seen in the image
to be processed. Figure 9 clarifies the idea.

B. Evaluation protocol

In CASR we recorded four cyclists. Accordingly, in order
to evaluate our arm signal classifier, we divide their videos
in training, validation, and testing sets. We use the videos
of two cyclists for training, the videos of the other two
cyclists are used for validation (training time) and testing,
respectively. By varying the role of the cyclists, we can
perform 12 training-validation-testing runs. Moreover, for each
trained classifier, we test on the annotated YouTube videos
too. We report individual metrics for each trained classifier,
as well as averaged metrics. Since we aim at performing
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Fig. 6: For T=14, left to right: (a) Action prob. for Keep walking to cross, mean over sequences and standard deviation; (b)
Same for Start crossing; (c) Predictability with action prob. thr. = 0.5, for Keep walking to cross; (d) Same for Start crossing.

Fig. 7: Results of C/NC classification

Fig. 8: Skeleton-based features: angles and distances.

TABLE V: Classification accuracy (Acc) and F1 score, both
ranging from 0 to 1. Worst, best and average (with standard
deviation) results over 12 experimental runs for each T value.
We report generalization results on YouTube videos (-YT).

T=1 Acc F1 Acc-YT F1-YT

Worst 0.89 0.86 0.82 0.78
Best 0.96 0.96 0.83 0.77
Avg 0.93± 0.02 0.92± 0.03 0.82± 0.01 0.76± 0.02

T=14 Acc F1 Acc-YT F1-YT

Worst 0.89 0.87 0.83 0.79
Best 0.96 0.96 0.85 0.79
Avg 0.93± 0.02 0.92± 0.03 0.83± 0.02 0.77± 0.02

per-frame arm signal classification, we use the F1 and Ac-
curacy standard metrics by counting classification errors and
successes in each tested frame. For each training-validation
run, we performed RF hyper-parameter search for the number
of trees and the maximum depth allowed before performing
the corresponding testing. For the former, we validated over
the set {50, 100, 200, 300, 400, 500}, and for the later over the
set {7, 10, 13, 16, 19, 22, 25, 28, 31, 34}. In this case, we also
consider T=1 and T=14 as temporal sliding window sizes.

Since CASR and the annotated YouTube videos contain
a single cyclist and no pedestrians, detecting the cyclist is

(a) Annotated as turning right

(b) Annotated as turning left

(c) Annotated as stopping

Fig. 9: Annotation of cyclist arm signals. We have followed a
vehicle-centric criterion for left/right annotation.

TABLE VI: Average classification accuracy (Acc) and F1
score, for both CASR and YouTube videos (-YT). Results are
reported for noise free keypoints, i.e. using them as provided
by the skeleton fitting algorithm, as well as for two different
levels of noise (20% and 30%) on their location, which is
forced at testing time (main text for details).

T=1 Acc F1 Acc-YT F1-YT

Noisefree 0.93± 0.02 0.92± 0.03 0.82± 0.01 0.76± 0.02
20% 0.91± 0.02 0.90± 0.03 0.81± 0.01 0.75± 0.02
30% 0.87± 0.02 0.86± 0.03 0.80± 0.01 0.72± 0.02

T=14 Acc F1 Acc-YT F1-YT

Noisefree 0.93± 0.02 0.92± 0.03 0.83± 0.02 0.77± 0.02
20% 0.93± 0.02 0.92± 0.02 0.83± 0.02 0.77± 0.02
30% 0.92± 0.02 0.92± 0.02 0.83± 0.02 0.76± 0.02

sufficient to perform our evaluation, i.e. we do not need to run
a tracker. Moreover, since the human pose estimation method
that we use [22] performs the double task of searching the
human and fitting its skeleton in a given 2D BB, we first relied
on the fine-tuned Faster R-CNN detector described in Sect. IV
for providing such BBs. However, it tends to leave the arms
of the cyclists out of the BBs. Thus, since our focus is not
on detection, we changed to Mask R-CNN [30], in this case
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we did not fine-tuned the detector to CASR since object-level
silhouette ground truth would be required. In practice, Mask
R-CNN is providing accurate detections in CASR, and only
in a few frames the corresponding detections were missing. In
these frames, since we are not running a tracker, we just took a
noisy version of the ground truth BB as detection. In particular,
we added uniform noise to the BB’s corner coordinates, being
the amount of noise proportional to the size of the BB (we
added independent Gaussian noise to each corner coordinates,
with zero mean and st. dev. set to 10% of the BB height,
width, x and y coordinates). With this protocol we focus on
the cyclist arm signal recognition itself. Moreover, Sect. IV
shows that the conclusions on pedestrian intention recognition
that we draw in [10] using a dataset designed just for such
a task, also hold in naturalistic traffic conditions. Thus, we
expect the same for cyclist arm signal recognition.

C. Results

Table V shows the quantitative results for T = 1 (single
frame), and T = 14 (roughly half a second), respectively.
These confirm the effectiveness of the proposed method with
relatively high accuracy values, which are quite stable (very
low standard deviation). Testing in the YouTube videos is
more challenging, but still the accuracy is remarkable since
we trained the model on CASR cyclists. In both cases,
aggregating temporal information does not help significantly
to boost performance; which can be expected since it is already
possible to understand what the intentions of the cyclists are
looking at a single frame. Still, analyzing more frames can
help to stabilize the classification output as we are going to
see. In order to confirm this, we force errors in the keypoints
as we did for pedestrian intention recognition (see Table I).
Table VI compares overall accuracies for noises of 20% and
30%, both for T=1 and T=14. As we can see, only 30% causes
an appreciable drop on performance for T=1, which is avoided
up to a large extent thanks to the multiframe setting, i.e. T=14.

Figures 10-13 present examples of correct results for T=14.
The blue BB is the detection. Note how the predictions works
for forward and backward faced pedestrians, even if they carry
a bag in the back, and at different distances (bigger characters
correspond to further away detections). Fig. 14 shows some
isolated frames with wrong predictions for CASR and T=14.
From left to right, the two first cases correspond to oncoming
cyclists indicating the intention of stopping and turning to
their right (left in vehicle-centric coordinates), but no action
is recognized because the detection BBs left the arms out
affecting the fitting of the skeleton. This could be solved by
systematically augmenting the BB size which is taken as area
of interest by the skeleton fitting procedure, at testing time.
In the third case the system confuses a future turn left with a
stop indication, however, this is the case only at the starting
of the action because it is not really clear what the cyclist is
going to indicate. The next frames make it clear so that the
system actually predicts the proper maneuver. In the fourth
case, the system recognises that the cyclist is indicating an
action, however, a stop sign is confused with a turn left, which
happens because of the relatively straight position of the arm.

TABLE VII: For T=1, top-25 most relevant cyclist skeleton-
based features from left-to-right and top-to-bottom.

Θ(4, 6, 7) Θ(9, 6, 7) L(8, 7) L(10, 7) Lx(10, 1)
Θ(3, 6, 7) Lx(10, 11) L(10, 6) Θ(3, 2, 7) Θ(6, 3, 7)

L(3, 2) Θ(11, 5, 6) Θ(4, 7, 6) Θ(10, 6, 7) Θ(5, 6, 13)
Θ(5, 6, 12) Θ(8, 6, 7) Θ(11, 6, 7) Θ(3, 7, 6) Θ(4, 2, 7)
Θ(6, 2, 7) Θ(12, 6, 7) Θ(5, 6, 10) L(5, 9) Θ(3, 6, 12)

TABLE VIII: Analogous to Table VII for T=14.

L14(8, 7) L12
x (10, 1) L8(8, 7) L9

x(10, 1) Θ14(12, 5, 6)
L5
x(10, 1) L10

x (10, 1) L6
x(10, 1) L13(5, 9) L6(8, 7)

L13(10, 6) L2
x(10, 1) L13

x (10, 1) Θ14(3, 6, 2) Θ12(2, 3, 7)
L8
x(10, 1) Θ14(8, 6, 7) Θ12(4, 2, 7) L7

x(10, 1) L12(5, 9)
L8(5, 9) Θ14(11, 5, 6) L7(4, 11) L9

x(10, 11) L10(8, 11)

In this case, we are able to understand the stop indication
because of the hand, which is not involved in the analysis of
the image. Therefore, this may suggest that a via to explore in
future work could be to analyse the area of the image in the
extreme of the fitted arms. In the last case, we cannot see any
action in this particular frame, while the system indicates a
right turn. In fact, in the previous frames, the cyclist actually
indicates a right turn; thus, overall this error is more due to
the fact that annotating the starting and ending of a given
action can have a couple of frames of ambiguity. Therefore,
in practice, not detecting any action in this frame or a right
turn probably must be considered as correct. Fig. 15 shows
error cases in the YouTube videos for T=14. From left to right,
one case due to having the cyclist arm indicating the action
out of the BB, two cases due to a bad fitting of the skeleton
because adverse conditions (bag in the back, narrow BBs and
low contrast arm-background), and two cases where the action
has just started and it is not yet clear enough (e.g. the last case
is just the starting of the left-turn action correctly classified in
the left example of Fig. 13). We also checked the confusion
matrices for CASR results, T=1 and T=14. We did not find
any particular confusion pattern between classes, neither for
noise free experiments, nor with 20%/30% noise.

Finally, we assess the most important features for the RF
classifier. Table VII shows the case T=1, for its Best classifier
in Table V. Most features correspond to angles defined by
either a keypoint from neck/shoulders/waist/legs and two kei-
points from arms (e.g. Θ(4, 6, 7)), or two keypoints from the
former set and one from the later (e.g. Θ(3, 2, 7)). Distances
between these two sets are also among the most relevant (e.g.
L(8, 7)). Table VIII is for T=14 and its Best classifier of Table
V. We see how current frame (i.e. frame 14 of the temporal
sliding window) mainly contributes with angle-based futures,
which is coherent with the results of T=1; i.e. to favour early
recognition despite using more frames. We see also how there
are many distance features between neck/shoulder/waist/leg
and arm keipoints (e.g. L8(8, 7),L9

x(10, 1)), most of them are
concentrated in the middle of the temporal window (from
frame 5 to 10 we find 12 feature-based features from the
top-25, from frame 12 to 14 we find 6) which makes clas-
sification more stable once the cyclist has indicated the sign
for ∼ 200 − 300ms. Note also how for cyclists, 25 features
are the ∼ 2% for T=1, and ∼ 0.15% for T=14.
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Fig. 10: Correct predictions in CASR for cyclist left turn indications (cropped from the original images). Remind that we are
using a vehicle-centric criteria, this is why for oncoming cyclist an indication as right-turn must be classified as left-turn.

Fig. 11: Correct predictions in CASR for cyclist right turn indications (cropped from the original images). Remind that we are
using a vehicle-centric criteria, this is why for oncoming cyclist an indication as left-turn must be classified as right-turn.

Fig. 12: Examples of correct predictions in CASR for cyclist stop indications (cropped from the original images).

Fig. 13: Examples of correct predictions in YouTube images (cropped from the original images).

Fig. 14: Wrong predictions in CASR for cyclist indications (cropped from the original images). ’N.S.’ stands for no sign.

Fig. 15: Wrong predictions in YouTube images (cropped from the original images). ’N.S.’ stands for no sign.
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VI. CONCLUSION

We have evaluated a monocular vision-based pipeline for
recognition of VRU intentions. We have addressed the pedes-
trian crossing/not-crossing problem in naturalistic driving con-
ditions (JAAD dataset). We have addressed the recognition of
cyclist arm signs, in this case elaborating our own dataset,
CASR. In both cases, we have applied the same procedure
since our work hypothesis is that human skeletons fitted on
2D images already convey core information for VRU intention
recognition. The obtained results support this hypothesis,
since by analysing features of the the fitted skeletons over
a relatively small temporal sliding window (∼ 500ms), the
recognition task is performed with a high accuracy. We have
showed quantitative results supporting this claim, and we have
also brought qualitative results (correct recognition cases, cur-
rent failure cases, top-features driving recognition) illustrating
the reasons. Other researchers can use our approach as part
of a modular perception pipeline, as affordances on end-to-
end driving models [38], or as additional cue on systems
performing 3D trajectory prediction [25].
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