toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mohammad Rouhani; Angel Sappa; E. Boyer edit  doi
openurl 
  Title Implicit B-Spline Surface Reconstruction Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 1 Pages 22 - 32  
  Keywords  
  Abstract This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.076 Approved no  
  Call Number Admin @ si @ RSB2015 Serial 2541  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
openurl 
  Title Incremental Generalized Discriminative Common Vectors for Image Classification Type Journal Article
  Year 2015 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume 26 Issue 8 Pages 1761 - 1775  
  Keywords  
  Abstract Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-237X ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.076 Approved no  
  Call Number Admin @ si @ DFD2015 Serial 2547  
Permanent link to this record
 

 
Author M. Olivera; Angel Sappa; Victor Santos edit  doi
openurl 
  Title A probabilistic approach for color correction in image mosaicking applications Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 14 Issue 2 Pages 508 - 523  
  Keywords Color correction; image mosaicking; color transfer; color palette mapping functions  
  Abstract Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.076 Approved no  
  Call Number Admin @ si @ OSS2015b Serial 2554  
Permanent link to this record
 

 
Author Francisco Blanco; Felipe Lumbreras; Joan Serrat; Roswitha Siener; Silvia Serranti; Giuseppe Bonifazi; Montserrat Lopez Mesas; Manuel Valiente edit  doi
openurl 
  Title Taking advantage of Hyperspectral Imaging classification of urinary stones against conventional IR Spectroscopy Type Journal Article
  Year 2014 Publication Journal of Biomedical Optics Abbreviated Journal JBiO  
  Volume 19 Issue 12 Pages 126004-1 - 126004-9  
  Keywords  
  Abstract The analysis of urinary stones is mandatory for the best management of the disease after the stone passage in order to prevent further stone episodes. Thus the use of an appropriate methodology for an individualized stone analysis becomes a key factor for giving the patient the most suitable treatment. A recently developed hyperspectral imaging methodology, based on pixel-to-pixel analysis of near-infrared spectral images, is compared to the reference technique in stone analysis, infrared (IR) spectroscopy. The developed classification model yields >90% correct classification rate when compared to IR and is able to precisely locate stone components within the structure of the stone with a 15 µm resolution. Due to the little sample pretreatment, low analysis time, good performance of the model, and the automation of the measurements, they become analyst independent; this methodology can be considered to become a routine analysis for clinical laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.076 Approved no  
  Call Number Admin @ si @ BLS2014 Serial 2563  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Meritxell Joanpere; Nuria Gorgorio; Lluis Albarracin edit   pdf
url  openurl
  Title Mathematics learning opportunities when playing a Tower Defense Game Type Journal
  Year 2015 Publication International Journal of Serious Games Abbreviated Journal IJSG  
  Volume 2 Issue 4 Pages 57-71  
  Keywords Tower Defense game; learning opportunities; mathematics; problem solving; game design  
  Abstract A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.076 Approved no  
  Call Number Admin @ si @ HJG2015 Serial 2730  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Antonio Lopez edit   pdf
doi  openurl
  Title Cost estimation of custom hoses from STL files and CAD drawings Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 3 Pages 299-309  
  Keywords On-line quotation; STL format; Regression; Gaussian process  
  Abstract We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.057; 600.054; 605.203 Approved no  
  Call Number Admin @ si @ SLL2013; ADAS @ adas @ Serial 2161  
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title Domain Adaptation of Deformable Part-Based Models Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 12 Pages 2367-2380  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.057; 600.054; 601.217; 600.076 Approved no  
  Call Number ADAS @ adas @ XRV2014b Serial 2436  
Permanent link to this record
 

 
Author David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo edit   pdf
doi  openurl
  Title Virtual and Real World Adaptation for Pedestrian Detection Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 4 Pages 797-809  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.057; 600.054; 600.076 Approved no  
  Call Number ADAS @ adas @ VML2014 Serial 2275  
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title A Novel Space Variant Image Representation Type Journal Article
  Year 2013 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 47 Issue 1-2 Pages 48-59  
  Keywords Space-variant representation; Log-polar mapping; Onboard vision applications  
  Abstract Traditionally, in machine vision images are represented using cartesian coordinates with uniform sampling along the axes. On the contrary, biological vision systems represent images using polar coordinates with non-uniform sampling. For various advantages provided by space-variant representations many researchers are interested in space-variant computer vision. In this direction the current work proposes a novel and simple space variant representation of images. The proposed representation is compared with the classical log-polar mapping. The log-polar representation is motivated by biological vision having the characteristic of higher resolution at the fovea and reduced resolution at the periphery. On the contrary to the log-polar, the proposed new representation has higher resolution at the periphery and lower resolution at the fovea. Our proposal is proved to be a better representation in navigational scenarios such as driver assistance systems and robotics. The experimental results involve analysis of optical flow fields computed on both proposed and log-polar representations. Additionally, an egomotion estimation application is also shown as an illustrative example. The experimental analysis comprises results from synthetic as well as real sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-9907 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.055; 605.203; 601.215 Approved no  
  Call Number Admin @ si @ OnS2013a Serial 2243  
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title Synthetic sequences and ground-truth flow field generation for algorithm validation Type Journal Article
  Year 2015 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 74 Issue 9 Pages 3121-3135  
  Keywords Ground-truth optical flow; Synthetic sequence; Algorithm validation  
  Abstract Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-7501 ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.055; 601.215; 600.076 Approved no  
  Call Number Admin @ si @ OnS2014b Serial 2472  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: