|
Records |
Links |
|
Author |
Carme Julia; Felipe Lumbreras; Angel Sappa |
|
|
Title |
A Factorization-based Approach to Photometric Stereo |
Type |
Journal Article |
|
Year |
2011 |
Publication |
International Journal of Imaging Systems and Technology |
Abbreviated Journal |
IJIST |
|
|
Volume |
21 |
Issue |
1 |
Pages |
115-119 |
|
|
Keywords |
|
|
|
Abstract |
This article presents an adaptation of a factorization technique to tackle the photometric stereo problem. That is to recover the surface normals and reflectance of an object from a set of images obtained under different lighting conditions. The main contribution of the proposed approach is to consider pixels in shadow and saturated regions as missing data, in order to reduce their influence to the result. Concretely, an adapted Alternation technique is used to deal with missing data. Experimental results considering both synthetic and real images show the viability of the proposed factorization-based strategy. © 2011 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 21, 115–119, 2011. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ JLS2011; ADAS @ adas @ |
Serial |
1711 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Boix; Josep M. Gonfaus; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez |
|
|
Title |
Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation |
Type |
Journal Article |
|
Year |
2012 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
96 |
Issue |
1 |
Pages |
83-102 |
|
|
Keywords |
|
|
|
Abstract |
The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimplied model since multiple classes can be reasonably expected to appear within large regions. This simplied model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an eective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISE;CIC;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGW2012 |
Serial |
1718 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras |
|
|
Title |
Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Intelligent and Robotic Systems |
Abbreviated Journal |
JIRC |
|
|
Volume |
64 |
Issue |
3-4 |
Pages |
625-649 |
|
|
Keywords |
|
|
|
Abstract |
Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Netherlands |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-0296 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
RV;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RGA2011 |
Serial |
1728 |
|
Permanent link to this record |
|
|
|
|
Author |
Fadi Dornaika; Jose Manuel Alvarez; Angel Sappa; Antonio Lopez |
|
|
Title |
A New Framework for Stereo Sensor Pose through Road Segmentation and Registration |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
12 |
Issue |
4 |
Pages |
954-966 |
|
|
Keywords |
road detection |
|
|
Abstract |
This paper proposes a new framework for real-time estimation of the onboard stereo head's position and orientation relative to the road surface, which is required for any advanced driver-assistance application. This framework can be used with all road types: highways, urban, etc. Unlike existing works that rely on feature extraction in either the image domain or 3-D space, we propose a framework that directly estimates the unknown parameters from the stream of stereo pairs' brightness. The proposed approach consists of two stages that are invoked for every stereo frame. The first stage segments the road region in one monocular view. The second stage estimates the camera pose using a featureless registration between the segmented monocular road region and the other view in the stereo pair. This paper has two main contributions. The first contribution combines a road segmentation algorithm with a registration technique to estimate the online stereo camera pose. The second contribution solves the registration using a featureless method, which is carried out using two different optimization techniques: 1) the differential evolution algorithm and 2) the Levenberg-Marquardt (LM) algorithm. We provide experiments and evaluations of performance. The results presented show the validity of our proposed framework. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ DAS2011; ADAS @ adas @ das2011a |
Serial |
1833 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester |
|
|
Title |
Multilocal Creaseness Measure |
Type |
Journal |
|
Year |
2012 |
Publication |
The Insight Journal |
Abbreviated Journal |
IJ |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Ridges, Valley, Creaseness, Structure Tensor, Skeleton, |
|
|
Abstract |
This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission. |
|
|
Address |
|
|
|
Corporate Author |
Alma IT Systems |
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
english |
Summary Language |
english |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ADAS; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VGL2012 |
Serial |
1840 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Rouhani; Angel Sappa |
|
|
Title |
Implicit Polynomial Representation through a Fast Fitting Error Estimation |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
21 |
Issue |
4 |
Pages |
2089-2098 |
|
|
Keywords |
|
|
|
Abstract |
Impact Factor
This paper presents a simple distance estimation for implicit polynomial fitting. It is computed as the height of a simplex built between the point and the surface (i.e., a triangle in 2-D or a tetrahedron in 3-D), which is used as a coarse but reliable estimation of the orthogonal distance. The proposed distance can be described as a function of the coefficients of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior . Hence, it can be used in any gradient-based optimization. In this paper, its use in a Levenberg-Marquardt framework is shown, which is particularly devoted for nonlinear least squares problems. The proposed estimation is a generalization of the gradient-based distance estimation, which is widely used in the literature. Experimental results, both in 2-D and 3-D data sets, are provided. Comparisons with state-of-the-art techniques are presented, showing the advantages of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RoS2012b; ADAS @ adas @ |
Serial |
1937 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa |
|
|
Title |
Multiple target tracking for intelligent headlights control |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
13 |
Issue |
2 |
Pages |
594-605 |
|
|
Keywords |
Intelligent Headlights |
|
|
Abstract |
Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g |
Serial |
1877 |
|
Permanent link to this record |
|
|
|
|
Author |
David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo |
|
|
Title |
Virtual and Real World Adaptation for Pedestrian Detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
4 |
Pages |
797-809 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ VML2014 |
Serial |
2275 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Antonio Lopez; Michael Felsberg |
|
|
Title |
Coloring Action Recognition in Still Images |
Type |
Journal Article |
|
Year |
2013 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
105 |
Issue |
3 |
Pages |
205-221 |
|
|
Keywords |
|
|
|
Abstract |
In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CIC; ADAS; 600.057; 600.048 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRW2013 |
Serial |
2285 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Theo Gevers; Ferran Diego; Antonio Lopez |
|
|
Title |
Road Geometry Classification by Adaptative Shape Models |
Type |
Journal Article |
|
Year |
2013 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
14 |
Issue |
1 |
Pages |
459-468 |
|
|
Keywords |
road detection |
|
|
Abstract |
Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;ISE |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGD2013;; ADAS @ adas @ |
Serial |
2269 |
|
Permanent link to this record |