|
Records |
Links |
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez |
|
|
Title |
An iterative multiresolution scheme for SFM with missing data |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
34 |
Issue |
3 |
Pages |
240–258 |
|
|
Keywords |
|
|
|
Abstract |
Several techniques have been proposed for tackling the Structure from Motion problem through factorization in the case of missing data. However, when the percentage of unknown data is high, most of them may not perform as well as expected. Focussing on this problem, an iterative multiresolution scheme, which aims at recovering missing entries in the originally given input matrix, is proposed. Information recovered following a coarse-to-fine strategy is used for filling in the missing entries. The objective is to recover, as much as possible, missing data in the given matrix.
Thus, when a factorization technique is applied to the partially or totally filled in matrix, instead of to the originally given input one, better results will be obtained. An evaluation study about the robustness to missing and noisy data is reported.
Experimental results obtained with synthetic and real video sequences are presented to show the viability of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JSL2009a |
Serial |
1163 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez |
|
|
Title |
Rank Estimation in Missing Data Matrix Problems |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
39 |
Issue |
2 |
Pages |
140-160 |
|
|
Keywords |
|
|
|
Abstract |
A novel technique for missing data matrix rank estimation is presented. It is focused on matrices of trajectories, where every element of the matrix corresponds to an image coordinate from a feature point of a rigid moving object at a given frame; missing data are represented as empty entries. The objective of the proposed approach is to estimate the rank of a missing data matrix in order to fill in empty entries with some matrix completion method, without using or assuming neither the number of objects contained in the scene nor the kind of their motion. The key point of the proposed technique consists in studying the frequency behaviour of the individual trajectories, which are seen as 1D signals. The main assumption is that due to the rigidity of the moving objects, the frequency content of the trajectories will be similar after filling in their missing entries. The proposed rank estimation approach can be used in different computer vision problems, where the rank of a missing data matrix needs to be estimated. Experimental results with synthetic and real data are provided in order to empirically show the good performance of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0924-9907 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ JSL2011; |
Serial |
1710 |
|
Permanent link to this record |
|
|
|
|
Author |
Naveen Onkarappa; Angel Sappa |
|
|
Title |
A Novel Space Variant Image Representation |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
47 |
Issue |
1-2 |
Pages |
48-59 |
|
|
Keywords |
Space-variant representation; Log-polar mapping; Onboard vision applications |
|
|
Abstract |
Traditionally, in machine vision images are represented using cartesian coordinates with uniform sampling along the axes. On the contrary, biological vision systems represent images using polar coordinates with non-uniform sampling. For various advantages provided by space-variant representations many researchers are interested in space-variant computer vision. In this direction the current work proposes a novel and simple space variant representation of images. The proposed representation is compared with the classical log-polar mapping. The log-polar representation is motivated by biological vision having the characteristic of higher resolution at the fovea and reduced resolution at the periphery. On the contrary to the log-polar, the proposed new representation has higher resolution at the periphery and lower resolution at the fovea. Our proposal is proved to be a better representation in navigational scenarios such as driver assistance systems and robotics. The experimental results involve analysis of optical flow fields computed on both proposed and log-polar representations. Additionally, an egomotion estimation application is also shown as an illustrative example. The experimental analysis comprises results from synthetic as well as real sequences. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0924-9907 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 605.203; 601.215 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OnS2013a |
Serial |
2243 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri |
|
|
Title |
Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
60 |
Issue |
4 |
Pages |
512-524 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.086; 600.130; 600.121; 600.118; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018a |
Serial |
3062 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate |
|
|
Title |
Feature Extraction by Using Dual-Generalized Discriminative Common Vectors |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
61 |
Issue |
3 |
Pages |
331-351 |
|
|
Keywords |
Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning |
|
|
Abstract |
In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.084; 600.118; 600.121; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRR2019 |
Serial |
3172 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras |
|
|
Title |
Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Intelligent and Robotic Systems |
Abbreviated Journal |
JIRC |
|
|
Volume |
64 |
Issue |
3-4 |
Pages |
625-649 |
|
|
Keywords |
|
|
|
Abstract |
Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Netherlands |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-0296 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
RV;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RGA2011 |
Serial |
1728 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Ramisa; David Aldavert; Shrihari Vasudevan; Ricardo Toledo; Ramon Lopez de Mantaras |
|
|
Title |
Evaluation of Three Vision Based Object Perception Methods for a Mobile Robot |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of Intelligent and Robotic Systems |
Abbreviated Journal |
JIRC |
|
|
Volume |
68 |
Issue |
2 |
Pages |
185-208 |
|
|
Keywords |
|
|
|
Abstract |
This paper addresses visual object perception applied to mobile robotics. Being able to perceive household objects in unstructured environments is a key capability in order to make robots suitable to perform complex tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera with tight time constraints. The paper brings to attention some of the issues with applying three state of the art object recognition and detection methods in a mobile robotics scenario, and proposes methods to deal with windowing/segmentation. Thus, this work aims at evaluating the state-of-the-art in object perception in an attempt to develop a lightweight solution for mobile robotics use/research in typical indoor settings. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Netherlands |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-0296 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAV2012 |
Serial |
2150 |
|
Permanent link to this record |
|
|
|
|
Author |
David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville |
|
|
Title |
A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Journal of Healthcare Engineering |
Abbreviated Journal |
JHCE |
|
|
Volume |
|
Issue |
|
Pages |
2040-2295 |
|
|
Keywords |
Colonoscopy images; Deep Learning; Semantic Segmentation |
|
|
Abstract |
Colorectal cancer (CRC) is the third cause of cancer death world-wide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss- rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aim- ing to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endolumninal scene, tar- geting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCN). We perform a compar- ative study to show that FCN significantly outperform, without any further post-processing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118;MILAB |
Approved |
no |
|
|
Call Number |
VBS2017b |
Serial |
2940 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Blanco; Felipe Lumbreras; Joan Serrat; Roswitha Siener; Silvia Serranti; Giuseppe Bonifazi; Montserrat Lopez Mesas; Manuel Valiente |
|
|
Title |
Taking advantage of Hyperspectral Imaging classification of urinary stones against conventional IR Spectroscopy |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Journal of Biomedical Optics |
Abbreviated Journal |
JBiO |
|
|
Volume |
19 |
Issue |
12 |
Pages |
126004-1 - 126004-9 |
|
|
Keywords |
|
|
|
Abstract |
The analysis of urinary stones is mandatory for the best management of the disease after the stone passage in order to prevent further stone episodes. Thus the use of an appropriate methodology for an individualized stone analysis becomes a key factor for giving the patient the most suitable treatment. A recently developed hyperspectral imaging methodology, based on pixel-to-pixel analysis of near-infrared spectral images, is compared to the reference technique in stone analysis, infrared (IR) spectroscopy. The developed classification model yields >90% correct classification rate when compared to IR and is able to precisely locate stone components within the structure of the stone with a 15 µm resolution. Due to the little sample pretreatment, low analysis time, good performance of the model, and the automation of the measurements, they become analyst independent; this methodology can be considered to become a routine analysis for clinical laboratories. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BLS2014 |
Serial |
2563 |
|
Permanent link to this record |
|
|
|
|
Author |
Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Paloma Aliende; Monica N. Ramsey |
|
|
Title |
Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Journal of Archaeological Science |
Abbreviated Journal |
JArchSci |
|
|
Volume |
148 |
Issue |
|
Pages |
105654 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability. |
|
|
Address |
December 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MSIAU; MACO; 600.167;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ BOL2022 |
Serial |
3753 |
|
Permanent link to this record |