toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Cristhian A. Aguilera-Carrasco; Angel Sappa; Ricardo Toledo edit  url
doi  openurl
  Title LGHD: a Feature Descriptor for Matching Across Non-Linear Intensity Variations Type Conference Article
  Year 2015 Publication 22th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 178 - 181  
  Keywords  
  Abstract  
  Address Quebec; Canada; September 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ AST2015 Serial 2630  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Gabriel Villalonga; Jiaolong Xu; David Vazquez; Jaume Amores; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection Type Conference Article
  Year 2015 Publication IEEE Intelligent Vehicles Symposium IV2015 Abbreviated Journal  
  Volume Issue Pages 356-361  
  Keywords Pedestrian Detection  
  Abstract Despite recent significant advances, pedestrian detection continues to be an extremely challenging problem in real scenarios. In order to develop a detector that successfully operates under these conditions, it becomes critical to leverage upon multiple cues, multiple imaging modalities and a strong multi-view classifier that accounts for different pedestrian views and poses. In this paper we provide an extensive evaluation that gives insight into how each of these aspects (multi-cue, multimodality and strong multi-view classifier) affect performance both individually and when integrated together. In the multimodality component we explore the fusion of RGB and depth maps obtained by high-definition LIDAR, a type of modality that is only recently starting to receive attention. As our analysis reveals, although all the aforementioned aspects significantly help in improving the performance, the fusion of visible spectrum and depth information allows to boost the accuracy by a much larger margin. The resulting detector not only ranks among the top best performers in the challenging KITTI benchmark, but it is built upon very simple blocks that are easy to implement and computationally efficient. These simple blocks can be easily replaced with more sophisticated ones recently proposed, such as the use of convolutional neural networks for feature representation, to further improve the accuracy.  
  Address Seoul; Corea; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference IV  
  Notes ADAS; 600.076; 600.057; 600.054 Approved no  
  Call Number ADAS @ adas @ GVX2015 Serial 2625  
Permanent link to this record
 

 
Author German Ros; Sebastian Ramos; Manuel Granados; Amir Bakhtiary; David Vazquez; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Vision-based Offline-Online Perception Paradigm for Autonomous Driving Type Conference Article
  Year 2015 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 231 - 238  
  Keywords Autonomous Driving; Scene Understanding; SLAM; Semantic Segmentation  
  Abstract Autonomous driving is a key factor for future mobility. Properly perceiving the environment of the vehicles is essential for a safe driving, which requires computing accurate geometric and semantic information in real-time. In this paper, we challenge state-of-the-art computer vision algorithms for building a perception system for autonomous driving. An inherent drawback in the computation of visual semantics is the trade-off between accuracy and computational cost. We propose to circumvent this problem by following an offline-online strategy. During the offline stage dense 3D semantic maps are created. In the online stage the current driving area is recognized in the maps via a re-localization process, which allows to retrieve the pre-computed accurate semantics and 3D geometry in realtime. Then, detecting the dynamic obstacles we obtain a rich understanding of the current scene. We evaluate quantitatively our proposal in the KITTI dataset and discuss the related open challenges for the computer vision community.  
  Address Hawaii; January 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference WACV  
  Notes ADAS; 600.076 Approved no  
  Call Number ADAS @ adas @ RRG2015 Serial 2499  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez edit   pdf
url  doi
isbn  openurl
  Title Color Attributes for Object Detection Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3306-3313  
  Keywords pedestrian detection  
  Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
 
  Address Providence; Rhode Island; USA;  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; CIC; Approved no  
  Call Number Admin @ si @ KRW2012 Serial 1935  
Permanent link to this record
 

 
Author David Aldavert; Arnau Ramisa; Ramon Lopez de Mantaras; Ricardo Toledo edit  url
isbn  openurl
  Title Real-time Object Segmentation using a Bag of Features Approach Type Conference Article
  Year 2010 Publication 13th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal  
  Volume 220 Issue Pages 321–329  
  Keywords Object Segmentation; Bag Of Features; Feature Quantization; Densely sampled descriptors  
  Abstract In this paper, we propose an object segmentation framework, based on the popular bag of features (BoF), which can process several images per second while achieving a good segmentation accuracy assigning an object category to every pixel of the image. We propose an efficient color descriptor to complement the information obtained by a typical gradient-based local descriptor. Results show that color proves to be a useful cue to increase the segmentation accuracy, specially in large homogeneous regions. Then, we extend the Hierarchical K-Means codebook using the recently proposed Vector of Locally Aggregated Descriptors method. Finally, we show that the BoF method can be easily parallelized since it is applied locally, thus the time necessary to process an image is further reduced. The performance of the proposed method is evaluated in the standard PASCAL 2007 Segmentation Challenge object segmentation dataset.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Amsterdam, Place of Publication Editor In R.Alquezar, A.Moreno, J.Aguilar.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9781607506423 Medium  
  Area Expedition Conference CCIA  
  Notes ADAS Approved no  
  Call Number Admin @ si @ ARL2010b Serial 1417  
Permanent link to this record
 

 
Author Arnau Ramisa; David Aldavert; Shrihari Vasudevan; Ricardo Toledo; Ramon Lopez de Mantaras edit  url
openurl 
  Title The IIIA30 MObile Robot Object Recognition Datset Type Conference Article
  Year 2011 Publication 11th Portuguese Robotics Open Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Object perception is a key feature in order to make mobile robots able to perform high-level tasks. However, research aimed at addressing the constraints and limitations encountered in a mobile robotics scenario, like low image resolution, motion blur or tight computational constraints, is still very scarce. In order to facilitate future research in this direction, in this work we present an object detection and recognition dataset acquired using a mobile robotic platform. As a baseline for the dataset, we evaluated the cascade of weak classifiers object detection method from Viola and Jones.  
  Address Lisboa  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Robotica  
  Notes RV;ADAS Approved no  
  Call Number Admin @ si @ RAV2011 Serial 1777  
Permanent link to this record
 

 
Author Arnau Ramisa; Shrihari Vasudevan; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras edit  url
doi  isbn
openurl 
  Title Evaluation of the SIFT Object Recognition Method in Mobile Robots: Frontiers in Artificial Intelligence and Applications Type Conference Article
  Year 2009 Publication 12th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal  
  Volume 202 Issue Pages 9-18  
  Keywords  
  Abstract General object recognition in mobile robots is of primary importance in order to enhance the representation of the environment that robots will use for their reasoning processes. Therefore, we contribute reduce this gap by evaluating the SIFT Object Recognition method in a challenging dataset, focusing on issues relevant to mobile robotics. Resistance of the method to the robotics working conditions was found, but it was limited mainly to well-textured objects.  
  Address Cardona, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0922-6389 ISBN 978-1-60750-061-2 Medium  
  Area Expedition Conference CCIA  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RVA2009 Serial 1248  
Permanent link to this record
 

 
Author Ferran Diego; G.D. Evangelidis; Joan Serrat edit   pdf
url  openurl
  Title Night-time outdoor surveillance by mobile cameras Type Conference Article
  Year 2012 Publication 1st International Conference on Pattern Recognition Applications and Methods Abbreviated Journal  
  Volume 2 Issue Pages 365-371  
  Keywords  
  Abstract This paper addresses the problem of video surveillance by mobile cameras. We present a method that allows online change detection in night-time outdoor surveillance. Because of the camera movement, background frames are not available and must be “localized” in former sequences and registered with the current frames. To this end, we propose a Frame Localization And Registration (FLAR) approach that solves the problem efficiently. Frames of former sequences define a database which is queried by current frames in turn. To quickly retrieve nearest neighbors, database is indexed through a visual dictionary method based on the SURF descriptor. Furthermore, the frame localization is benefited by a temporal filter that exploits the temporal coherence of videos. Next, the recently proposed ECC alignment scheme is used to spatially register the synchronized frames. Finally, change detection methods apply to aligned frames in order to mark suspicious areas. Experiments with real night sequences recorded by in-vehicle cameras demonstrate the performance of the proposed method and verify its efficiency and effectiveness against other methods.  
  Address Algarve, Portugal  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRAM  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DES2012 Serial 2035  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie edit   pdf
url  openurl
  Title Inferring the Performance of Medical Imaging Algorithms Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6854 Issue Pages 520-528  
  Keywords Validation, Statistical Inference, Medical Imaging Algorithms.  
  Abstract Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
 
  Address Sevilla  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Berlin Editor Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title L Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ HGR2011 Serial 1676  
Permanent link to this record
 

 
Author Ishaan Gulrajani; Kundan Kumar; Faruk Ahmed; Adrien Ali Taiga; Francesco Visin; David Vazquez; Aaron Courville edit   pdf
url  openurl
  Title PixelVAE: A Latent Variable Model for Natural Images Type Conference Article
  Year 2017 Publication 5th International Conference on Learning Representations Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep Learning; Unsupervised Learning  
  Abstract Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representation and generate samples that preserve global structure but tend to suffer from image blurriness. PixelCNNs model sharp contours and details very well, but lack an explicit latent representation and have difficulty modeling large-scale structure in a computationally efficient way. In this paper, we present PixelVAE, a VAE model with an autoregressive decoder based on PixelCNN. The resulting architecture achieves state-of-the-art log-likelihood on binarized MNIST. We extend PixelVAE to a hierarchy of multiple latent variables at different scales; this hierarchical model achieves competitive likelihood on 64x64 ImageNet and generates high-quality samples on LSUN bedrooms.  
  Address Toulon; France; April 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICLR  
  Notes ADAS; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number ADAS @ adas @ GKA2017 Serial 2815  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: