toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Victor Vaquero; German Ros; Francesc Moreno-Noguer; Antonio Lopez; Alberto Sanfeliu edit   pdf
doi  openurl
  Title Joint coarse-and-fine reasoning for deep optical flow Type Conference Article
  Year 2017 Publication 24th International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 2558-2562  
  Keywords  
  Abstract We propose a novel representation for dense pixel-wise estimation tasks using CNNs that boosts accuracy and reduces training time, by explicitly exploiting joint coarse-and-fine reasoning. The coarse reasoning is performed over a discrete classification space to obtain a general rough solution, while the fine details of the solution are obtained over a continuous regression space. In our approach both components are jointly estimated, which proved to be beneficial for improving estimation accuracy. Additionally, we propose a new network architecture, which combines coarse and fine components by treating the fine estimation as a refinement built on top of the coarse solution, and therefore adding details to the general prediction. We apply our approach to the challenging problem of optical flow estimation and empirically validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets.  
  Address Beijing; China; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes ADAS; 600.118 Approved (up) no  
  Call Number Admin @ si @ VRM2017 Serial 2898  
Permanent link to this record
 

 
Author Guim Perarnau; Joost Van de Weijer; Bogdan Raducanu; Jose Manuel Alvarez edit   pdf
openurl 
  Title Invertible conditional gans for image editing Type Conference Article
  Year 2016 Publication 30th Annual Conference on Neural Information Processing Systems Worshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Generative Adversarial Networks (GANs) have recently demonstrated to successfully approximate complex data distributions. A relevant extension of this model is conditional GANs (cGANs), where the introduction of external information allows to determine specific representations of the generated images. In this work, we evaluate encoders to inverse the mapping of a cGAN, i.e., mapping a real image into a latent space and a conditional representation. This allows, for example, to reconstruct and modify real images of faces conditioning on arbitrary attributes.
Additionally, we evaluate the design of cGANs. The combination of an encoder
with a cGAN, which we call Invertible cGAN (IcGAN), enables to re-generate real
images with deterministic complex modifications.
 
  Address Barcelona; Spain; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NIPSW  
  Notes LAMP; ADAS; 600.068 Approved (up) no  
  Call Number Admin @ si @ PWR2016 Serial 2906  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
doi  openurl
  Title Cross-Spectral Image Patch Similarity using Convolutional Neural Network Type Conference Article
  Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The ability to compare image regions (patches) has been the basis of many approaches to core computer vision problems, including object, texture and scene categorization. Hence, developing representations for image patches have been of interest in several works. The current work focuses on learning similarity between cross-spectral image patches with a 2 channel convolutional neural network (CNN) model. The proposed approach is an adaptation of a previous work, trying to obtain similar results than the state of the art but with a lowcost hardware. Hence, obtained results are compared with both
classical approaches, showing improvements, and a state of the art CNN based approach.
 
  Address San Sebastian; Spain; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECMSM  
  Notes ADAS; 600.086; 600.118 Approved (up) no  
  Call Number Admin @ si @ SSV2017a Serial 2916  
Permanent link to this record
 

 
Author Angel Valencia; Roger Idrovo; Angel Sappa; Douglas Plaza; Daniel Ochoa edit   pdf
openurl 
  Title A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers Type Conference Article
  Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In general, robot grasping approaches are based on the usage of multi-finger grippers. However, when large size objects need to be manipulated vacuum grippers are preferred, instead of finger based grippers. This paper aims to estimate the best picking place for a two suction cups vacuum gripper,
when planar objects with an unknown size and geometry are considered. The approach is based on the estimation of geometric properties of object’s shape from a partial cloud of points (a single 3D view), in such a way that combine with considerations of a theoretical model to generate an optimal contact point
that minimizes the vacuum force needed to guarantee a grasp.
Experimental results in real scenarios are presented to show the validity of the proposed approach.
 
  Address San Sebastian; Spain; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECMSM  
  Notes ADAS; 600.086; 600.118 Approved (up) no  
  Call Number Admin @ si @ VIS2017 Serial 2917  
Permanent link to this record
 

 
Author Cristhian Aguilera; Xavier Soria; Angel Sappa; Ricardo Toledo edit   pdf
openurl 
  Title RGBN Multispectral Images: a Novel Color Restoration Approach Type Conference Article
  Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal  
  Volume Issue Pages  
  Keywords Multispectral Imaging; Free Sensor Model; Neural Network  
  Abstract This paper describes a color restoration technique used to remove NIR information from single sensor cameras where color and near-infrared images are simultaneously acquired|referred to in the literature as RGBN images. The proposed approach is based on a neural network architecture that learns the NIR information contained in the RGBN images. The proposed approach is evaluated on real images obtained by using a pair of RGBN cameras. Additionally, qualitative comparisons with a nave color correction technique based on mean square
error minimization are provided.
 
  Address Porto; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PAAMS  
  Notes ADAS; MSIAU; 600.118; 600.122 Approved (up) no  
  Call Number Admin @ si @ ASS2017 Serial 2918  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title Learning to Colorize Infrared Images Type Conference Article
  Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal  
  Volume Issue Pages  
  Keywords CNN in multispectral imaging; Image colorization  
  Abstract This paper focuses on near infrared (NIR) image colorization by using a Generative Adversarial Network (GAN) architecture model. The proposed architecture consists of two stages. Firstly, it learns to colorize the given input, resulting in a RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. The proposed model starts the learning process from scratch, because our set of images is very di erent from the dataset used in existing pre-trained models, so transfer learning strategies cannot be used. Infrared image colorization is an important problem when human perception need to be considered, e.g, in remote sensing applications. Experimental results with a large set of real images are provided showing the validity of the proposed approach.  
  Address Porto; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PAAMS  
  Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved (up) no  
  Call Number Admin @ si @ Serial 2919  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
doi  openurl
  Title Infrared Image Colorization based on a Triplet DCGAN Architecture Type Conference Article
  Year 2017 Publication IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper proposes a novel approach for colorizing near infrared (NIR) images using Deep Convolutional Generative Adversarial Network (GAN) architectures. The proposed approach is based on the usage of a triplet model for learning each color channel independently, in a more homogeneous way. It allows a fast convergence during the training, obtaining a greater similarity between the given NIR image and the corresponding ground truth. The proposed approach has been evaluated with a large data set of NIR images and compared with a recent approach, which is also based on a GAN architecture but in this case all the
color channels are obtained at the same time.
 
  Address Honolulu; Hawaii; USA; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes ADAS; 600.086; 600.118 Approved (up) no  
  Call Number Admin @ si @ SSV2017b Serial 2920  
Permanent link to this record
 

 
Author Alexey Dosovitskiy; German Ros; Felipe Codevilla; Antonio Lopez; Vladlen Koltun edit   pdf
openurl 
  Title CARLA: An Open Urban Driving Simulator Type Conference Article
  Year 2017 Publication 1st Annual Conference on Robot Learning. Proceedings of Machine Learning Abbreviated Journal  
  Volume 78 Issue Pages 1-16  
  Keywords Autonomous driving; sensorimotor control; simulation  
  Abstract We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end
model trained via imitation learning, and an end-to-end model trained via
reinforcement learning. The approaches are evaluated in controlled scenarios of
increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform’s utility for autonomous driving research.
 
  Address Mountain View; CA; USA; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CORL  
  Notes ADAS; 600.085; 600.118 Approved (up) no  
  Call Number Admin @ si @ DRC2017 Serial 2988  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
openurl 
  Title Colorizing Infrared Images through a Triplet Conditional DCGAN Architecture Type Conference Article
  Year 2017 Publication 19th international conference on image analysis and processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords CNN in Multispectral Imaging; Image Colorization  
  Abstract This paper focuses on near infrared (NIR) image colorization by using a Conditional Deep Convolutional Generative Adversarial Network (CDCGAN) architecture model. The proposed architecture is based on the usage of a conditional probabilistic generative model. Firstly, it learns to colorize the given input image, by using a triplet model architecture that tackle every channel in an independent way. In the proposed model, the nal layer of red channel consider the infrared image to enhance the details, resulting in a sharp RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. Experimental results with a large set of real images are provided showing the validity of the proposed approach. Additionally, the proposed approach is compared with a state of the art approach showing better results.  
  Address Catania; Italy; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIAP  
  Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved (up) no  
  Call Number Admin @ si @ SSV2017c Serial 3016  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Antonio Lopez edit   pdf
doi  openurl
  Title Procedural Generation of Videos to Train Deep Action Recognition Networks Type Conference Article
  Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2594-2604  
  Keywords  
  Abstract Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for ”Procedural Human Action Videos”. It contains a total of 39, 982 videos, with more than 1, 000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We introduce a deep multi-task representation learning architecture to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF101 and HMDB51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, significantly
outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
 
  Address Honolulu; Hawaii; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; 600.076; 600.085; 600.118 Approved (up) no  
  Call Number Admin @ si @ SGC2017 Serial 3051  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: