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Abstract

This paper proposes a novel approach for colorizing
near infrared (NIR) images using Deep Convolutional Gen-
erative Adversarial Network (GAN) architectures. The pro-
posed approach is based on the usage of a triplet model for
learning each color channel independently, in a more ho-
mogeneous way. It allows a fast convergence during the
training, obtaining a greater similarity between the given
NIR image and the corresponding ground truth. The pro-
posed approach has been evaluated with a large data set of
NIR images and compared with a recent approach, which
is also based on a GAN architecture but in this case all the
color channels are obtained at the same time.

1. Introduction
Image acquisition devices have largely expanded in re-

cent years, mainly due to the decrease in price of electron-
ics together with the increase in computational power. This
increase in sensor technology has resulted in a large family
of images, able to capture different information (from dif-
ferent spectral bands) or complementary information (2D,
3D, 4D); hence, we can have: HD 2D images; video se-
quences at a high frame rate; panoramic 3D images; multi-
spectral images; just to mention a few. In spite of the large
amount of possibilities, when the information needs to be
provided to a final user, the classical RGB representation is
preferred. This preference is supported by the fact that hu-
man visual perception system is sensitive to (400-700nm);
hence, representing the information in that range help user
understanding. In this context, the current paper tackles the
near infrared (NIR) image colorization, trying to generate
realistic RGB representations.

The NIR spectral band is the closest in wavelength to the

radiation detectable by the human eye; hence, NIR images
share several properties with visible images. The interest of
using NIR images is related with their capability to segment
images according to the object’s material. Surface reflection
in the NIR spectral band is material dependent, for instance,
most pigments used for material colorization are somewhat
transparent to NIR. This means that the difference in the
NIR intensities is not only due to the particular color of the
material, but also to the absorption and reflectance of dyes.

The absorption/reflectance properties mentioned above
are used for instance in remote sensing applications for
crop stress and weed/pest infestations. NIR images are also
widely used in video surveillance applications. In these two
contexts (i.e., remote sensing and video surveillance), it is
quite difficult for users to orientate when NIR images are
provided, since the lack of color discrimination or wrong
color deploy. In this work a neural network based approach
for NIR image colorization is proposed. Although the
problem shares some particularities with image colorization
(e.g., [6], [3], [15]) and color correction/transfer (e.g., [8],
[9]) there are some notable differences. First, in the im-
age colorization domain—gray scale image to RGB—there
are some clues, such as the fact that luminance is given by
grayscale input, so only the chrominance need to be esti-
mated. Secondly, in the case of color correction/transfer
techniques, in general three channels are given as input to
obtain the new representation in the new three dimensional
space. In the particular problem tackled in this work (NIR to
visible spectrum representation) a single channel is mapped
into a three dimensional space, making it a difficult and
challenging problem. The manuscript is organized as fol-
lows. Related works are presented in Section 2. Then, the
proposed approach is detailed in Section 3. Experimental
results with a large set of images are presented in Section 4.
Finally, conclusions are given in Section 5.
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2. Related work
Colorization techniques have been largely studied in re-

cent years. Several methods have been proposed to solve
this challenging task. However, most of them are not fully
automatic, some techniques require some user interactions
or utilize user-defined search table. The problem addressed
in the current paper is related with infrared image coloriza-
tion, as mentioned above, somehow it shares some com-
mon problems with monocromatic image colorization ap-
proaches proposed during last decades. Colorization tech-
niques algorithms mostly differ in the ways they obtain and
treat the data for modeling the correspondences between
grayscale and color.

Coarsely speaking colorization techniques can be classi-
fied into parametric and non-parametric approaches. Para-
metric methods learn prediction functions from large
datasets of color images at training time, posing the problem
as either regression onto continuous color space or classifi-
cation of quantized color values. Non-parametric methods,
on the other hand, given an input grayscale image, firstly
they define one or more color reference images (provided
by an user or automatically retrieved) to be used as source
data. Then, following the image analogy framework, color
is transferred onto the input image from analogous regions
of the reference image(s).

Welsh et al. [13] describe a semi-automatic technique for
colorizing a grayscale image by transferring color from a
reference color image. They examine the luminance values
in the neighborhood of each pixel in the target image and
transfer the color from pixels with matching neighborhoods
in the reference image. This technique works well on im-
ages where differently colored regions give rise to distinct
luminance clusters, or possess distinct textures. In other
cases, the user must direct the search for matching pixels
by specifying swatches indicating corresponding regions in
the two images. It is also difficult to fine-tune the outcome
selectively in problematic areas.

The approaches presented above have been implemented
using classical image processing techniques. However,
recently Convolutional Neural Network (CNN) based ap-
proaches are becoming the dominant paradigm in almost
every computer vision task. CNNs have shown outstanding
results in various and diverse computer vision tasks such as
stereo vision [14], image classification [12] or even difficult
problems related with cross-spectral domains [1] outper-
forming conventional hand-made approaches. Hence, we
can find some recent image colorization approaches based
on deep learning, exploiting to the maximum the capacities
of this type of convolutional neural networks. As an ex-
ample, we can mention the approach presented on [15]. It
proposes a fully automatic approach that produces brilliant
and sharpen colored images. They model the unknown un-
certainty of the desaturated colorization levels, designing it

as a classification task and using class-rebalancing at train-
ing time to augment the diversity of colors in the result.

On the contrary, [5] presents a technique that combines
both global priors and local image features. Based on a
CNN, a fusion layer merges local information, dependent
on small image patches, with global priors, computed us-
ing the entire image. The model is trained in an end-to-end
fashion, so this architecture can process images of any res-
olution. They leverage an existing large-scale scene clas-
sification database to train the model, exploiting the class
labels of the dataset to more efficiently and discriminatively
learn the global priors. A recent research on a colorization
technique, focused on images of the infrared spectrum, has
proposed to use convolutional neural networks to perform
an automatic integrated colorization from a single channel
NIR image to RGB images [7]. In this paper the author
proposes a deep multi-scale convolutional neural network
to perform a direct estimation of the low RGB frequency
values. Additionally, it requires a final step that filters the
raw output of the CNN and transfers the details of the input
image to the final output image.

Deep Convolutional Generative Adversarial Networks
(DCGANs) are a class of neural networks that have gained
popularity in recent years. They allow a network to learn
to generate data with the same internal structure as other
data. GANs are powerful and flexible tools, one of their
most common applications is image generation. In the GAN
framework [4], generative models are estimated via an ad-
versarial process, in which simultaneously two models are
trained: a generative model G that captures the data dis-
tribution, and a discriminative model D that estimates the
probability that a sample came from the training data rather
than G. The training procedure for G is to maximize the
probability of D making a mistake. This framework cor-
responds to a minimax two-player game. In the space of
arbitrary functions G and D, a unique solution exists, with
G recovering the training data distribution and D equal to
1/2 everywhere. In [10] some techniques to improve the
efficiency of the generative adversarial networks have been
proposed; one of them, referred to as the virtual batch nor-
malization, allows to significantly improve the network op-
timization using the statistics of each set of training batches.

Recently, [11] proposes a NIR image colorization using
a DCGAN architecture. In that work, a colorization model
is obtained based on a GAN architecture. On the contrary
to that work, in the current paper a triplet based colorization
model is proposed to generate the colorized images, in the
same scheme of architectures of DC Generative Adversarial
Networks. The proposed model generates three instances,
each corresponding to one of channels of the (R,G,B) im-
age. This model shares learning parameters and its output
is then measured by its probability of being as similar as
possible to the image given as ground truth. The details of



the implementation are presented in the following section.

3. Proposed approach
This section presents the approach proposed for NIR im-

age colorization. As mentioned above, a recent work on
colorization [11] has proposed the usage of a deep convo-
lutional adversarial generative learning network. It is based
on a traditional scheme of layers in a deep network. In the
current work we also propose the usage of a DCGAN but
in a triplet learning layers architecture scheme. These mod-
els have been used to solve other types of problems such
as learning local characteristics, feature extraction, simi-
larity learning, face recognition, etc. Based on the results
that have been obtained on this type of solutions, where
improvements in accuracy and performance have been ob-
tained, we propose the usage of a learning model that al-
lows the multiple representation of each of the channels of
an image of the visible spectrum (R, G, B). Therefore, the
model will receive as input the same image of the near in-
frared spectrum (NIR), with a Gaussian noise added in each
channel of the image to generate the necessary variability
of the training set, to be able to generalize the learning of
the colorization process. A global loss function is used
to minimize the overall classification error in the training
set, which can improve the generalization capability of the
model.

A DCGAN network based architecture is selected due to
several reasons: i) its fast convergence capability; ii) the
capacity of the generator model to easily serve as a den-
sity model of the training data; and iii) sampling is simple
and efficient. The network is intended to learn to generate
new samples from an unknown probability distribution. In
our case, the generator network has been modified to use
a triplet to represent the learning of each image channel
independently; at the output of the generator network, the
three resulting image channels are recombined to generate
the RGB image. This will be validated by the discriminative
network, which will evaluate the probability that the col-
orized image (RGB), is similar to the real one that is used
as ground truth. Additionally, the generator model, in order
to obtain a true color, the DCGAN framework is reformu-
lated for a conditional generative image modeling tuple. In
other words, the generative model G(z; θg) is trained from
a near infrared image plus some Gaussian noise, in order to
produce a colored RGB image; additionally, a discrimina-
tive model D(z; θd) is trained to assign the correct label to
the generated colored image, according to the provided real
color image, which is used as a ground truth. Variables (θg)
and (θd) represents the weighting values for the generative
and discriminative networks.

The DCGAN network has been trained using Stochastic
AdamOptimazer since it prevents overfitting and leads to
convergence faster. Furthermore, it is computationally effi-

cient, has little memory requirements, is invariant to diag-
onal rescaling of the gradients, and is well suited for prob-
lems that are large in terms of data and/or parameters. Our
image dataset was normalized in a (-1,1) range and an ad-
ditive Gaussian Distribution noise with a standard deviation
of 0.00011, 0.00012, 0.00013 added to each image chan-
nel of the proposed triplet model. The following hyper-
parameters were used during the learning process: learning
rate 0.0002 for the generator and the discriminator networks
respectively; epsilon = 1e-08; exponential decay rate for the
1st moment momentum 0.5 for discriminator and 0.4 for
the generator; weight initializer with a standard deviation
of 0.00282; weight decay 1e-5; leak relu 0.2 and patch’s
size of 64×64.

The Triplet architecture of the baseline model is con-
formed by convolutional, de-convolutional, relu, leak-relu,
fully connected and activation function tanh and sigmoid
for generator and discriminator networks respectively. Ad-
ditionally, every layer of the model uses batch normaliza-
tion for training any type of mapping that consists of multi-
ple composition of affine transformation with element-wise
nonlinearity and do not stuck on saturation mode. It is very
important to maintain the spatial information in the genera-
tor model, there is not pooling and drop-out layers and only
the stride of 1 is used to avoid downsize the image shape. To
prevent overfiting we have add a l1 regularization term(λ) in
the generator model, this regularization has the particular-
ity that the weights matrix end up using only a small subset
of their most important inputs and become quite resistant to
noise in the inputs, this characteristics is very useful when
the network try to learn which features are contributing to
the learning proccess. Figure 1 presents an illustration of
the proposed Triplet GAN architecture.

The generator (G) and discriminator (D) are both feed-
forward deep neural networks that play a min-max game be-
tween one another. The generator takes as an input a near in-
frared image blurred with a Gaussian noise patch of 64×64
pixels, and transforms it into the form of the data we are
interested in imitating, in our case a RGB images. The dis-
criminator takes as an input a set of data, either real image
(z) or generated image (G(z)), and produces a probability of
that data being real (P(z)). The discriminator is optimized
in order to increase the likelihood of giving a high proba-
bility to the real data (the ground truth given image) and a
low probability to the fake generated data (wrongly colored
NIR image), as introduced in [4]; thus, it is formulated as
follow:

maxDV(D,G) =5θg
1

m

m∑
i=1

[logD(x(i))+log(1−D(G(z(i))))],

(1)
where m is the number of patches in each batch, x is the
ground truth image and z is the colored NIR image gen-
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(G) Generator Network with Model Triplet

(D) Discriminator Network
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Figure 1. Illustration of the network architecture used for NIR image colorization.

erated by the network. The weights of the discriminator
network (D) are updated by ascending its stochastic gradi-
ent. On the other hand, the generator is then optimized in
order to increase the probability of the generated data being
highly rated:

minGV(D,G) =5θg
1

m

m∑
i=1

log(1−D(G(z(i)))). (2)

where m is the number of samples in each batch and z is
the colored NIR image generated by the network. Like in
the previous case, the weights of the generator network (G)
are updated by descending its stochastic gradient.

4. Experimental Results
The proposed approach has been evaluated using NIR

images and their corresponding RGB obtained from [2].
The urban and old-building categories have been consid-
ered for evaluating the performance of the proposed ap-
proach. These categories have been selected since they look
quite similar; the intention is to evaluate the capability of the
network to be used in scenario containing similar objects,
which have not been used during the training stage. Figure
2 and Fig. 3 presents three pairs of images from each of
these categories. The urban category contains 58 pairs of
images of (1024×680 pixels), while the old-building con-
tains 51 pairs of images of (1024×680 pixels). From each
of these categories 250.000 pairs of patches of (64×64 pix-
els) have been cropped both, in the NIR images as well as in



Figure 2. Pair of images (1024×680 pixels) from [2], urban cate-
gory: (top) NIR images to colorize; (bottom) RGB images used
as ground truth.

Figure 3. Pair of images (1024×680 pixels) from [2], old-building
category: (top) NIR images to colorize; (bottom) RGB images
used as ground truth.

the corresponding RGB images. Additionally, 2500 pairs of
patches of (64×64 pixels) have been also generated for val-
idation. It should be noted that images are correctly regis-
tered, so that a pixel-to-pixel correspondence is guaranteed.

The DCGAN network proposed in the current work
for NIR image colorization has been trained using a 3.2
eight core processor with 16Gb of memory with a NVIDIA
GeForce GTX970 GPU. On average every training process
took about 28 hours. The proposed architecture has been
evaluated using three different training schemes. Firstly,
the DCGAN network has been trained with the urban cate-
gory and evaluated with both urban and old-building cate-
gories. The same process was applied but by training with
the old-building category and testing with both urban and
old-building categories. Finally, the DCGAN network has
been trained with both data sets and evaluated indepen-
dently in each of them, urban and old-building categories.
The same scheme has been applied to the GAN model pre-
sented in [11] and compared with the results obtained with
the proposed approach.

Colored images are referred to as (RGBNIR) while the
corresponding RGB images, provided in the given data set,
are referred to as (RGBGT ) and used as ground truth. The
quantitative evaluation consists of measuring at every pixel
the angular error (AE) between the obtained result (col-
orized NIR image) and the corresponding RGB image pro-

Table 1: Average angular errors obtained with the proposed
Triplet based DCGAN architecture.

Training Evaluation
urban old-building

urban 4.8 8.6
old-building 9.8 7.1

both categories 7.4 8.2

Table 2: Average angular errors obtained with the approach
presented in [11].

Training Evaluation
urban old-building

urban 8.6 12.5
old-building 11.7 10.6

both categories 9.9 11.4

vided in the given data set as ground truth value :

AE = cos−1

(
dot(RGBNIR, RGBGT )

norm(RGBNIR) ∗ norm(RGBGT )

)
(3)

This angular error is computed over every single pixel of
the whole set of images used for validation. Table 1 presents
the average angular errors (AE) obtained with the three
schemes mentioned above. The same evaluation scheme
has been used with the approach presented in [11]; the re-
sults obtained with that approach are presented in Table 2.
It can be appreciated that in all the cases the results with the
proposed DCGAN are better that those obtained with [11].

Qualitative results are presented in Fig. 4 and Fig. 5.
Figure 4 shows NIR images from the urban category col-
orized with the DCGAN network trained with images from
that category. On the contrary, Fig. 5 depicts NIR images
from the old-building category colorized with the DCGAN
network trained with images from the urban category. It
should be noticed that although the weights of the network
have been obtained from a different category, colorized im-
ages look quite similar to the ground truth ones. Coloriza-
tion results from other training schemes are similar.

5. Conclusions
This paper tackles the challenging problem of NIR im-

age colorization by using a novel Deep Convolutional Gen-
erative Adversarial Network architecture model. Results
have shown that in most of the cases the network is able
to obtain a reliable RGB representation of the given NIR
image. Additionally, comparison with a recent approach
shows the advantages of the proposed DCGAN architecture.
Future work will be focused on evaluating other network ar-
chitecture, like autoencoders, conditional GAN, which have
shown appealing results in recent works. Finally, the pro-
posed approach will be tested in other image categories try-
ing to exploit the transfer learning approaches.



Figure 4. (top) NIR images from the urban category. (middle)
Images colorized with the DCGAN network trained with urban
images. (bottom) Ground truth images.

Figure 5. (top) NIR images from the old-building category.
(middle) Images colorized with the DCGAN network trained
with urban images. (bottom) Ground truth images
.
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[2] M. Brown and S. Süsstrunk. Multi-spectral SIFT for scene
category recognition. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 177–
184. IEEE, 2011. 4, 5

[3] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 415–423, 2015. 1

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014. 2, 3

[5] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be
Color!: Joint End-to-end Learning of Global and Local Im-
age Priors for Automatic Image Colorization with Simulta-
neous Classification. ACM Transactions on Graphics (Proc.
of SIGGRAPH 2016), 35(4), 2016. 2

[6] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-
resentations for automatic colorization. In European Con-
ference on Computer Vision, pages 577–593. Springer, 2016.
1

[7] M. Limmer and H. Lensch. Infrared colorization us-
ing deep convolutional neural networks. arXiv preprint
arXiv:1604.02245, 2016. 2

[8] M. Oliveira, A. D. Sappa, and V. Santos. Unsupervised local
color correction for coarsely registered images. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 201–208. IEEE, 2011. 1

[9] M. Oliveira, A. D. Sappa, and V. Santos. A probabilistic
approach for color correction in image mosaicking applica-
tions. IEEE Transactions on Image Processing, 24(2):508–
523, 2015. 1

[10] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systems, pages
2226–2234, 2016. 2

[11] V. Suarez, Sappa. Learning to colorize infrared images.
In Advances in Intelligent Systems and Computing, pages
4353–4358, 2017. 2, 3, 5

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842,
2014. 2

[13] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color
to greyscale images. In ACM Transactions on Graphics
(TOG), volume 21, pages 277–280. ACM, 2002. 2

[14] J. Zbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches. arXiv
preprint arXiv:1510.05970, 2015. 2

[15] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. In European Conference on Computer Vision, pages
649–666. Springer, 2016. 1, 2


