toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jiaolong Xu edit  isbn
openurl 
  Title (up) Domain Adaptation of Deformable Part-based Models Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract On-board pedestrian detection is crucial for Advanced Driver Assistance Systems
(ADAS). An accurate classi cation is fundamental for vision-based pedestrian detection.
The underlying assumption for learning classi ers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classi ers. However, in practice, there are di erent reasons that can break this constancy assumption. Accordingly, reusing existing classi ers by adapting them from the previous training environment (source domain) to the new testing one (target domain) is an approach with increasing acceptance in the computer vision community. In this thesis we focus on the domain adaptation of deformable part-based models (DPMs) for pedestrian detection. As a prof of concept, we use a computer graphic based synthetic dataset, i.e. a virtual world, as the source domain, and adapt the virtual-world trained DPM detector to various real-world dataset.
We start by exploiting the maximum detection accuracy of the virtual-world
trained DPM. Even though, when operating in various real-world datasets, the virtualworld trained detector still su er from accuracy degradation due to the domain gap of virtual and real worlds. We then focus on domain adaptation of DPM. At the rst step, we consider single source and single target domain adaptation and propose two batch learning methods, namely A-SSVM and SA-SSVM. Later, we further consider leveraging multiple target (sub-)domains for progressive domain adaptation and propose a hierarchical adaptive structured SVM (HA-SSVM) for optimization. Finally, we extend HA-SSVM for the challenging online domain adaptation problem, aiming at making the detector to automatically adapt to the target domain online, without any human intervention. All of the proposed methods in this thesis do not require
revisiting source domain data. The evaluations are done on the Caltech pedestrian detection benchmark. Results show that SA-SSVM slightly outperforms A-SSVM and avoids accuracy drops as high as 15 points when comparing with a non-adapted detector. The hierarchical model learned by HA-SSVM further boosts the domain adaptation performance. Finally, the online domain adaptation method has demonstrated that it can achieve comparable accuracy to the batch learned models while not requiring manually label target domain examples. Domain adaptation for pedestrian detection is of paramount importance and a relatively unexplored area. We humbly hope the work in this thesis could provide foundations for future work in this area.
 
  Address April 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-1-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Xu2015 Serial 2631  
Permanent link to this record
 

 
Author David Vazquez edit   pdf
isbn  openurl
  Title (up) Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume 1 Issue 1 Pages 1-105  
  Keywords Pedestrian Detection; Domain Adaptation  
  Abstract Pedestrian detection is of paramount interest for many applications, e.g. Advanced Driver Assistance Systems, Intelligent Video Surveillance and Multimedia systems. Most promising pedestrian detectors rely on appearance-based classifiers trained with annotated data. However, the required annotation step represents an intensive and subjective task for humans, what makes worth to minimize their intervention in this process by using computational tools like realistic virtual worlds. The reason to use these kind of tools relies in the fact that they allow the automatic generation of precise and rich annotations of visual information. Nevertheless, the use of this kind of data comes with the following question: can a pedestrian appearance model learnt with virtual-world data work successfully for pedestrian detection in real-world scenarios?. To answer this question, we conduct different experiments that suggest a positive answer. However, the pedestrian classifiers trained with virtual-world data can suffer the so called dataset shift problem as real-world based classifiers does. Accordingly, we have designed different domain adaptation techniques to face this problem, all of them integrated in a same framework (V-AYLA). We have explored different methods to train a domain adapted pedestrian classifiers by collecting a few pedestrian samples from the target domain (real world) and combining them with many samples of the source domain (virtual world). The extensive experiments we present show that pedestrian detectors developed within the V-AYLA framework do achieve domain adaptation. Ideally, we would like to adapt our system without any human intervention. Therefore, as a first proof of concept we also propose an unsupervised domain adaptation technique that avoids human intervention during the adaptation process. To the best of our knowledge, this Thesis work is the first demonstrating adaptation of virtual and real worlds for developing an object detector. Last but not least, we also assessed a different strategy to avoid the dataset shift that consists in collecting real-world samples and retrain with them in such a way that no bounding boxes of real-world pedestrians have to be provided. We show that the generated classifier is competitive with respect to the counterpart trained with samples collected by manually annotating pedestrian bounding boxes. The results presented on this Thesis not only end with a proposal for adapting a virtual-world pedestrian detector to the real world, but also it goes further by pointing out a new methodology that would allow the system to adapt to different situations, which we hope will provide the foundations for future research in this unexplored area.  
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona Editor Antonio Lopez;Daniel Ponsa  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940530-1-6 Medium  
  Area Expedition Conference  
  Notes adas Approved yes  
  Call Number ADAS @ adas @ Vaz2013 Serial 2276  
Permanent link to this record
 

 
Author Angel Sappa; Boris X. Vintimilla edit  openurl
  Title (up) Edge Point Linking by Means of Global and Local Schemes Type Book Chapter
  Year 2008 Publication in Signal Processing for Image Enhancement and Multimedia Processing Abbreviated Journal  
  Volume 11 Issue Pages 115–125  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor E. Damiani  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SaV2008 Serial 938  
Permanent link to this record
 

 
Author Jose M. Armingol; Jorge Alfonso; Nourdine Aliane; Miguel Clavijo; Sergio Campos-Cordobes; Arturo de la Escalera; Javier del Ser; Javier Fernandez; Fernando Garcia; Felipe Jimenez; Antonio Lopez; Mario Mata edit  url
doi  openurl
  Title (up) Environmental Perception for Intelligent Vehicles Type Book Chapter
  Year 2018 Publication Intelligent Vehicles. Enabling Technologies and Future Developments Abbreviated Journal  
  Volume Issue Pages 23–101  
  Keywords Computer vision; laser techniques; data fusion; advanced driver assistance systems; traffic monitoring systems; intelligent vehicles  
  Abstract Environmental perception represents, because of its complexity, a challenge for Intelligent Transport Systems due to the great variety of situations and different elements that can happen in road environments and that must be faced by these systems. In connection with this, so far there are a variety of solutions as regards sensors and methods, so the results of precision, complexity, cost, or computational load obtained by these works are different. In this chapter some systems based on computer vision and laser techniques are presented. Fusion methods are also introduced in order to provide advanced and reliable perception systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @AAA2018 Serial 3046  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri edit  url
isbn  openurl
  Title (up) Extensiones del método de vectores comunes discriminantes Aplicadas a la clasificación de imágenes Type Book Whole
  Year 2013 Publication Extensiones del método de vectores comunes discriminantes Aplicadas a la clasificación de imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Los métodos basados en subespacios son una herramienta muy utilizada en aplicaciones de visión por computador. Aquí se presentan y validan algunos algoritmos que hemos propuesto en este campo de investigación. El primer algoritmo está relacionado con una extensión del método de vectores comunes discriminantes con kernel, que reinterpreta el espacio nulo de la matriz de dispersión intra-clase del conjunto de entrenamiento para obtener las características discriminantes. Dentro de los métodos basados en subespacios existen diferentes tipos de entrenamiento. Uno de los más populares, pero no por ello uno de los más eficientes, es el aprendizaje por lotes. En este tipo de aprendizaje, todas las muestras del conjunto de entrenamiento tienen que estar disponibles desde el inicio. De este modo, cuando nuevas muestras se ponen a disposición del algoritmo, el sistema tiene que ser reentrenado de nuevo desde cero. Una alternativa a este tipo de entrenamiento es el aprendizaje incremental. Aquí­ se proponen diferentes algoritmos incrementales del método de vectores comunes discriminantes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-639-55339-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DiF2013 Serial 2440  
Permanent link to this record
 

 
Author Antonio Lopez; Jiaolong Xu; Jose L. Gomez; David Vazquez; German Ros edit   pdf
openurl 
  Title (up) From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example Type Book Chapter
  Year 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal  
  Volume Issue 13 Pages 243-258  
  Keywords Domain Adaptation  
  Abstract Supervised learning tends to produce more accurate classifiers than unsupervised learning in general. This implies that training data is preferred with annotations. When addressing visual perception challenges, such as localizing certain object classes within an image, the learning of the involved classifiers turns out to be a practical bottleneck. The reason is that, at least, we have to frame object examples with bounding boxes in thousands of images. A priori, the more complex the model is regarding its number of parameters, the more annotated examples are required. This annotation task is performed by human oracles, which ends up in inaccuracies and errors in the annotations (aka ground truth) since the task is inherently very cumbersome and sometimes ambiguous. As an alternative we have pioneered the use of virtual worlds for collecting such annotations automatically and with high precision. However, since the models learned with virtual data must operate in the real world, we still need to perform domain adaptation (DA). In this chapter we revisit the DA of a deformable part-based model (DPM) as an exemplifying case of virtual- to-real-world DA. As a use case, we address the challenge of vehicle detection for driver assistance, using different publicly available virtual-world data. While doing so, we investigate questions such as: how does the domain gap behave due to virtual-vs-real data with respect to dominant object appearance per domain, as well as the role of photo-realism in the virtual world.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Gabriela Csurka  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 601.223; 600.076; 600.118 Approved no  
  Call Number ADAS @ adas @ LXG2017 Serial 2872  
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa; David Geronimo edit   pdf
doi  isbn
openurl 
  Title (up) Interactive Training of Human Detectors Type Book Chapter
  Year 2013 Publication Multiodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages 169-182  
  Keywords Pedestrian Detection; Virtual World; AdaBoost; Domain Adaptation  
  Abstract Image based human detection remains as a challenging problem. Most promising detectors rely on classifiers trained with labelled samples. However, labelling is a manual labor intensive step. To overcome this problem we propose to collect images of pedestrians from a virtual city, i.e., with automatic labels, and train a pedestrian detector with them, which works fine when such virtual-world data are similar to testing one, i.e., real-world pedestrians in urban areas. When testing data is acquired in different conditions than training one, e.g., human detection in personal photo albums, dataset shift appears. In previous work, we cast this problem as one of domain adaptation and solve it with an active learning procedure. In this work, we focus on the same problem but evaluating a different set of faster to compute features, i.e., Haar, EOH and their combination. In particular, we train a classifier with virtual-world data, using such features and Real AdaBoost as learning machine. This classifier is applied to real-world training images. Then, a human oracle interactively corrects the wrong detections, i.e., few miss detections are manually annotated and some false ones are pointed out too. A low amount of manual annotation is fixed as restriction. Real- and virtual-world difficult samples are combined within what we call cool world and we retrain the classifier with this data. Our experiments show that this adapted classifier is equivalent to the one trained with only real-world data but requiring 90% less manual annotations.  
  Address Springer Heidelberg New York Dordrecht London  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 605.203 Approved no  
  Call Number VLP2013; ADAS @ adas @ vlp2013 Serial 2193  
Permanent link to this record
 

 
Author Gabriel Villalonga edit  isbn
openurl 
  Title (up) Leveraging Synthetic Data to Create Autonomous Driving Perception Systems Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Manually annotating images to develop vision models has been a major bottleneck
since computer vision and machine learning started to walk together. This has
been more evident since computer vision falls on the shoulders of data-hungry
deep learning techniques. When addressing on-board perception for autonomous
driving, the curse of data annotation is exacerbated due to the use of additional
sensors such as LiDAR. Therefore, any approach aiming at reducing such a timeconsuming and costly work is of high interest for addressing autonomous driving
and, in fact, for any application requiring some sort of artificial perception. In the
last decade, it has been shown that leveraging from synthetic data is a paradigm
worth to pursue in order to minimizing manual data annotation. The reason is
that the automatic process of generating synthetic data can also produce different
types of associated annotations (e.g. object bounding boxes for synthetic images
and LiDAR pointclouds, pixel/point-wise semantic information, etc.). Directly
using synthetic data for training deep perception models may not be the definitive
solution in all circumstances since it can appear a synth-to-real domain shift. In
this context, this work focuses on leveraging synthetic data to alleviate manual
annotation for three perception tasks related to driving assistance and autonomous
driving. In all cases, we assume the use of deep convolutional neural networks
(CNNs) to develop our perception models.
The first task addresses traffic sign recognition (TSR), a kind of multi-class
classification problem. We assume that the number of sign classes to be recognized
must be suddenly increased without having annotated samples to perform the
corresponding TSR CNN re-training. We show that leveraging synthetic samples of
such new classes and transforming them by a generative adversarial network (GAN)
trained on the known classes (i.e. without using samples from the new classes), it is
possible to re-train the TSR CNN to properly classify all the signs for a ∼ 1/4 ratio of
new/known sign classes. The second task addresses on-board 2D object detection,
focusing on vehicles and pedestrians. In this case, we assume that we receive a set
of images without the annotations required to train an object detector, i.e. without
object bounding boxes. Therefore, our goal is to self-annotate these images so
that they can later be used to train the desired object detector. In order to reach
this goal, we leverage from synthetic data and propose a semi-supervised learning
approach based on the co-training idea. In fact, we use a GAN to reduce the synthto-real domain shift before applying co-training. Our quantitative results show
that co-training and GAN-based image-to-image translation complement each
other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from
human annotations. While in previous tasks we focus on vision-based perception,
the third task we address focuses on LiDAR pointclouds. Our initial goal was to
develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While
for images we may expect synth/real-to-real domain shift due to differences in
their appearance (e.g. when source and target images come from different camera
sensors), we did not expect so for LiDAR pointclouds since these active sensors
factor out appearance and provide sampled shapes. However, in practice, we have
seen that it can be domain shift even among real-world LiDAR pointclouds. Factors
such as the sampling parameters of the LiDARs, the sensor suite configuration onboard the ego-vehicle, and the human annotation of 3D bounding boxes, do induce
a domain shift. We show it through comprehensive experiments with different
publicly available datasets and 3D detectors. This redirected our goal towards the
design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored
topic.
Finally, it is worth to mention that all the synthetic datasets used for these three
tasks, have been designed and generated in the context of this PhD work and will
be publicly released. Overall, we think this PhD presents several steps forward to
encourage leveraging synthetic data for developing deep perception models in the
field of driving assistance and autonomous driving.
 
  Address February 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;German Ros  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-2-3 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Vil2021 Serial 3599  
Permanent link to this record
 

 
Author Gemma Rotger edit  isbn
openurl 
  Title (up) Lifelike Humans: Detailed Reconstruction of Expressive Human Faces Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Developing human-like digital characters is a challenging task since humans are used to recognizing our fellows, and find the computed generated characters inadequately humanized. To fulfill the standards of the videogame and digital film productions it is necessary to model and animate these characters the most closely to human beings. However, it is an arduous and expensive task, since many artists and specialists are required to work on a single character. Therefore, to fulfill these requirements we found an interesting option to study the automatic creation of detailed characters through inexpensive setups. In this work, we develop novel techniques to bring detailed characters by combining different aspects that stand out when developing realistic characters, skin detail, facial hairs, expressions, and microexpressions. We examine each of the mentioned areas with the aim of automatically recover each of the parts without user interaction nor training data. We study the problems for their robustness but also for the simplicity of the setup, preferring single-image with uncontrolled illumination and methods that can be easily computed with the commodity of a standard laptop. A detailed face with wrinkles and skin details is vital to develop a realistic character. In this work, we introduce our method to automatically describe facial wrinkles on the image and transfer to the recovered base face. Then we advance to facial hair recovery by resolving a fitting problem with a novel parametrization model. As of last, we develop a mapping function that allows transfer expressions and microexpressions between different meshes, which provides realistic animations to our detailed mesh. We cover all the mentioned points with the focus on key aspects as (i) how to describe skin wrinkles in a simple and straightforward manner, (ii) how to recover 3D from 2D detections, (iii) how to recover and model facial hair from 2D to 3D, (iv) how to transfer expressions between models holding both skin detail and facial hair, (v) how to perform all the described actions without training data nor user interaction. In this work, we present our proposals to solve these aspects with an efficient and simple setup. We validate our work with several datasets both synthetic and real data, prooving remarkable results even in challenging cases as occlusions as glasses, thick beards, and indeed working with different face topologies like single-eyed cyclops.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Felipe Lumbreras;Antonio Agudo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-3-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rot2021 Serial 3513  
Permanent link to this record
 

 
Author Cristhian Aguilera edit  isbn
openurl 
  Title (up) Local feature description in cross-spectral imagery Type Book Whole
  Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Over the last few years, the number of consumer computer vision applications has increased dramatically. Today, computer vision solutions can be found in video game consoles, smartphone applications, driving assistance – just to name a few. Ideally, we require the performance of those applications, particularly those that are safety critical to remain constant under any external environment factors, such as changes in illumination or weather conditions. However, this is not always possible or very difficult to obtain by only using visible imagery, due to the inherent limitations of the images from that spectral band. For that reason, the use of images from different or multiple spectral bands is becoming more appealing.
The aforementioned possible advantages of using images from multiples spectral bands on various vision applications make multi-spectral image processing a relevant topic for research and development. Like in visible image processing, multi-spectral image processing needs tools and algorithms to handle information from various spectral bands. Furthermore, traditional tools such as local feature detection, which is the basis of many vision tasks such as visual odometry, image registration, or structure from motion, must be adjusted or reformulated to operate under new conditions. Traditional feature detection, description, and matching methods tend to underperform in multi-spectral settings, in comparison to mono-spectral settings, due to the natural differences between each spectral band.
The work in this thesis is focused on the local feature description problem when cross-spectral images are considered. In this context, this dissertation has three main contributions. Firstly, the work starts by proposing the usage of a combination of frequency and spatial information, in a multi-scale scheme, as feature description. Evaluations of this proposal, based on classical hand-made feature descriptors, and comparisons with state of the art cross-spectral approaches help to find and understand limitations of such strategy. Secondly, different convolutional neural network (CNN) based architectures are evaluated when used to describe cross-spectral image patches. Results showed that CNN-based methods, designed to work with visible monocular images, could be successfully applied to the description of images from two different spectral bands, with just minor modifications. In this framework, a novel CNN-based network model, specifically intended to describe image patches from two different spectral bands, is proposed. This network, referred to as Q-Net, outperforms state of the art in the cross-spectral domain, including both previous hand-made solutions as well as L2 CNN-based architectures. The third contribution of this dissertation is in the cross-spectral feature description application domain. The multispectral odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two different multi-spectral datasets are generated and shared with the community to be used as benchmarks for further studies.
 
  Address October 2017  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-6-3 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Agu2017 Serial 3020  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: