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this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage
and retrieval system, without permission in writing from the author.

ISBN: 978-84-940530-1-6

Printed by Ediciones Gráficas Rey, S.L.
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Abstract

Pedestrian detection is of paramount interest for many applications, e.g. Advanced
Driver Assistance Systems, Intelligent Video Surveillance and Multimedia systems.
Most promising pedestrian detectors rely on appearance-based classifiers trained with
annotated data. However, the required annotation step represents an intensive and
subjective task for humans, what makes worth to minimize their intervention in this
process by using computational tools like realistic virtual worlds. The reason to
use these kind of tools relies in the fact that they allow the automatic generation
of precise and rich annotations of visual information. Nevertheless, the use of this
kind of data comes with the following question: can a pedestrian appearance model
learnt with virtual-world data work successfully for pedestrian detection in real-world
scenarios?. To answer this question, we conduct different experiments that suggest a
positive answer. However, the pedestrian classifiers trained with virtual-world data
can suffer the so called dataset shift problem as real-world based classifiers does.
Accordingly, we have designed different domain adaptation techniques to face this
problem, all of them integrated in a same framework (V-AYLA). We have explored
different methods to train a domain adapted pedestrian classifiers by collecting a
few pedestrian samples from the target domain (real world) and combining them
with many samples of the source domain (virtual world). The extensive experiments
we present show that pedestrian detectors developed within the V-AYLA framework
do achieve domain adaptation. Ideally, we would like to adapt our system without
any human intervention. Therefore, as a first proof of concept we also propose an
unsupervised domain adaptation technique that avoids human intervention during
the adaptation process. To the best of our knowledge, this Thesis work is the first
demonstrating adaptation of virtual and real worlds for developing an object detector.
Last but not least, we also assessed a different strategy to avoid the dataset shift that
consists in collecting real-world samples and retrain with them in such a way that
no bounding boxes of real-world pedestrians have to be provided. We show that
the generated classifier is competitive with respect to the counterpart trained with
samples collected by manually annotating pedestrian bounding boxes. The results
presented on this Thesis not only end with a proposal for adapting a virtual-world
pedestrian detector to the real world, but also it goes further by pointing out a new
methodology that would allow the system to adapt to different situations, which we
hope will provide the foundations for future research in this unexplored area.
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Resumen

La detección de peatones es clave para muchas aplicaciones como asistencia al conduc-
tor, video vigilancia o multimedia. Los mejores detectores se basan en clasificadores
basados en modelos de apariencia entrenados con ejemplos anotados. Sin embargo, el
proceso de anotación es una tarea intensiva y subjetiva cuando es llevada a cabo por
personas. Por ello, vale la pena minimizar la intervención humana en dicha tarea me-
diante el uso de herramientas computacionales como los mundos virtuales porque con
ellos podemos obtener anotaciones variadas y precisas de forma rápida. Sin embargo,
el uso de este tipo de datos genera la siguiente pregunta: ¿Es posible que un modelo de
apariencia entrenado en un mundo virtual pueda funcionar de manera satisfactoria en
el mundo real? Para responder esta pregunta, hemos realizado diferentes experimen-
tos que sugieren que los clasificadores entrenados en el mundo virtual pueden ofrecer
buenos resultados al aplicarse en ambientes del mundo real. Sin embargo, también
se encontró que en algunos casos estos clasificadores se pueden ver afectados por el
problema conocido como el cambio en la naturaleza de los datos, igual que ocurre
con los clasificadores entrenados en el mundo real. En consecuencia, hemos diseñado
un sistema de adaptación de dominio, V-AYLA, en el que hemos probado diferentes
técnicas para recoger unos pocos ejemplos del mundo real y combinarlos con una gran
cantidad de ejemplos del mundo virtual para entrenar un detector de peatones adap-
tado. V-AYLA ofrece la misma precisión de detección que un detector entrenado con
anotaciones manuales y probado con imágenes reales del mismo dominio. Idealmente,
nos gustaŕıa que nuestro sistema se adaptase automáticamente sin necesidad de in-
tervención humana. Por ello, a modo de demostración, proponemos utilizar técnicas
de adaptación no supervisadas que permitan eliminar completamente la intervención
humana del proceso de adaptación. Hasta donde sabemos, este es el primer trabajo
que muestra que es posible desarrollar un detector de objetos en el mundo virtual y
adaptarlo al mundo real. Finalmente, proponemos una estrategia diferente para evitar
el problema del cambio en la naturaleza de los datos que consiste en recoger ejemplos
en el mundo real y reentrenar solamente con ellos pero haciéndolo de tal modo que
no se tengan que anotar peatones en el mundo real. El resultado de este clasificador
es equivalente a otro entrenado con anotaciones obtenidas de forma manual. Los re-
sultados presentados en esta tesis no se limitan a adaptar un detector de peatones
virtuales al mundo real, sino que va más allá, mostrando una nueva metodoloǵıa que
permitiŕıa a un sistema adaptarse a cualquier nueva situación y que sienta las bases
para la investigación futura en este campo todav́ıa sin explorar.
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Resum

La detecció de vianants es clau per moltes aplicacions com els sistemes d’assistència
al conductor, la videovigilància o els sistemes multimèdia. Els millors detectors es
basen en classificadors basats en models d’aparença entrenats amb exemples anotats.
No obstant, el procés d’anotació és un procés feixuc i subjectiu quan és realitzat per
persones. Per això, val la pena minimitzar la intervenció humana en aquesta tasca
mitjançant l’ús d’eines computacionals com són els mons virtuals ja que amb ells po-
dem obtenir anotacions variades i precises de forma ràpida. No obstant, la utilització
d’aquestes dades, ens planteja la següent qüestió: És possible que un model d’aparença
entrenat en un món virtual pugui funcionar de manera satisfactòria en el món real?
Per respondre aquesta pregunta, hem realitzat diferents experiments que suggereixen
que els classificadors entrenats en el món virtual poden oferir bons resultats al apli-
carse en ambients del món real. Tot i això, també s’han trobat alguns casos en que
els classificadors es poden veure afectats pel canvi en la naturalesa de les dades, de la
mateixa manera que passa amb els classificadors entrenats en el món real. Com a con-
seqüència de tot plegat, hem dissenyat un sistema d’adaptació de domini, V-AYLA.
En aquest sistema hem provat diferents tècniques per recollir exemples del món real
i combinar-los amb una gran quantitat d’exemples del món virtual, per entrenar un
detector de vianants adaptat. V-AYLA presenta la mateixa precisió que un detector
entrenat amb anotacions manuals i comprovat amb imatges reals del mateix domini.
Idealment, ens agradaria que el nostre sistema s’adaptés automàticament sense ne-
cessitat d’intervenció humana. Amb aquest objectiu, proposem utilitzar tècniques
d’adaptació no supervisada que ens permetin eliminar completament la intervenció
humana en el procés d’adaptació. Fins on tenim coneixement, aquest representa el
primer treball que demostra que és possible desenvolupar un detector d’objectes en el
món virtual i adaptar-lo al món real. Finalment, proposem una estratègia diferent per
evitar el problema del canvi de naturalesa de dades que consisteix en agafar exemples
del món real i re entrenar tan sols amb ells però fent-ho de manera que no calgui an-
otar els vianants en el món real. El resultat d’aquest classificador és equivalent a un
altre entrenat amb milers d’anotacions manuals. Els resultats presentats en aquesta
tesis no es limiten a adaptar un detector de vianants virtuals al món real, sinó que
va més enllà, mostrant una nova metodologia que permetria a un sistema adaptar-se
a qualsevol situació que estableix les bases per la investigació futura en aquest camp
encara sense explorar.
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eCo-DRIVERS
Ecologic Cooperative Driver and Road Intelligent Visual Exploration for Route

Safety, 2012-2014



Reducing traffic accidents is an automotive driving force of the European Com-
mission (EC), which points out the development of advanced driver assistance systems
(ADAS) as key to reduce them. Another EC driving force is environment. In this
case, electric cars are a major contribution of the automotive industry. Deploying
current market ADAS into electric cars presents a difficulty. Current systems based
on radar/lidar which are technologies not well suited for electric cars (price, interfer-
ences).

The aim of eCo-DRIVERS project is to research technologies for bringing ADAS
to urban oriented electric vehicles. Two are the major distinctive features of the pro-
posal: (1) the use of vision as eco-sensor; and (2) to follow a driver-centric approach,
i.e., rather than thinking in road and driver monitoring as working-alone ADAS, eCo-
DRIVERS will make them to cooperate in order to assist the driver only when he/she
really needs it, or in other words, working as actual co-drivers. Both things together
build the concept of eco-driver.

This Thesis has been developed under this project and thanks to the previous
projects that lead to this one.



Chapter 1

Introduction

Advanced Driver Assistance Systems (ADAS) aim to improve traffic safety by provid-
ing warnings and performing counteractive measures in dangerous situations. Pedes-
trian Protection Systems (PPS) try to avoid vehicle-to-pedestrian collisions by de-
tecting the presence of pedestrians around the vehicle in order to warn the driver,
perform braking actions, or perform evasive manoeuvres. In the PPS, the key com-
ponent is a forward facing image acquisition and processing system able to detect
pedestrians in real-time, as well as fulfilling a demanding tradeoff between misdetec-
tions and false alarms. The main challenge of a PPS is detecting the pedestrians
because they present a very high appearance variability. They can wear different
clothes, change pose, carry different objects, and have a considerable range of sizes.
Moreover, they have to be detected in urban scenarios with cluttered background,
under a wide range of weather and illumination conditions, from different viewpoints
and can be partially occluded. Accordingly, as the comprehensive state-of-the-art
reviews in [29,32,43,49,56,116] reveal, research on image-based pedestrian detection
for PPS has been a very relevant topic in the computer vision community during the
last decade.

The goal of a pedestrian detector is to find the pedestrians present in a given
video (i.e. framing each one with a bounding box). The most widespread pedestrian
detection framework consists of several stages [49]: (1) selection of candidates (image
windows) to be classified as containing a pedestrian or not, (2) the classification of
such windows, and (3) non-maximum suppression process to remove multiple detec-
tions. As we work with videos a (4) tracking stage is also used to remove spurious
detections, improving the candidate selection process and deriving information like
the motion direction of each pedestrian. All these stages are quite relevant and can
contribute on their own to achieve a reliable pedestrian detector in terms of processing
time and detection performance. However, since the number of candidates per image
runs from thousands to hundred of thousands, the classification stage is specially crit-
ical in such a pipeline. Accordingly, most of the work done on image-based pedestrian
detection has been focused on the classification stage, i.e. given a candidate window
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4 INTRODUCTION

decide if it contains a pedestrian or not.

The most promising pedestrian detectors rely on appearance-based classifiers
learnt supervisedly. The learning machine requires annotated examples and coun-
terexamples for training, i.e. pedestrians and background. In this framework, having
sufficient variability in the training set is decisive to learn classifiers able to general-
ize for unseen scenarios [22]. Unfortunately, obtaining the desired variability in the
training data is not easy for pedestrian detection in the PPS context, since we are
limited to the variability of the annotated video sequences recorded from a car. We
can hypothesize that larger training sets are likely to have higher variability, which
seems to be confirmed by the fact that classification performance tends to increase
with the size of the training sets for some classifiers [3], including pedestrian classi-
fiers [79]. However, while increasing the number of counterexamples is automatic and
effective1, having a large number of examples is expensive in the sense that many
video sequences must be recorded on-board and a large amount of manual interven-
tion is required in the annotation process. Moreover, just subjectively adding more
examples does not guarantee higher variability, i.e. it can happen that the human
annotator just adds pedestrians quite similar to the ones previously annotated. In
fact, the same can happen for the images from which counterexamples are collected.

Hence, obtaining good annotated samples (pedestrians and background) is a rel-
evant open issue for learning reliable pedestrian classifiers within the discriminative
paradigm. The ideal scenario is to be able to engineer the variability of the samples
at low human annotation cost. In the pedestrian detection literature we can find
some examples. However, either the results were not good [16] or costly manual sil-
houette delineation was required [34]. In fact, having good annotated examples is an
issue for object detection in general, as well as for category recognition, image clas-
sification and any other visual task involving discriminative machine learning. Thus,
in the last years different web-based tools, as LabelMe [8] or Amazon Mechanical
Turk (MTurk) [89], have been proposed for manually collecting annotated informa-
tion from images. However, web-based annotation has different problems inherent to
human workers whose solution still requires more research [108].

One of the contributions of this thesis is a new idea for collecting training anno-
tations. We want to explore the synergies between modern Computer Graphics and
Computer Vision in order to close the circle: the Computer Graphics community is
modelling the real world by building increasingly realistic virtual worlds, therefore it
comes up the question, can we now learn our models of interest in such controllable
virtual worlds and use them successfully back in real world?. In this thesis we aim
to answer a more specific question for the PPS context: Can a pedestrian appear-
ance model learnt with virtual-world data work successfully for pedestrian detection in
real-world scenarios?. In order to address this question, we capture images at virtual
urban scenarios using a virtual camera installed in a virtual car forward facing the
virtual road ahead. To acquire such virtual-world images, we use a realistic videogame
to obtain pixel-wise annotations of the imaged pedestrians. Figure 3.1 illustrates the

1For instance, since manual annotation of images free of examples is cheap, bootstrapping
or cascade methods can be applied to gather hard false positives and retrain



5

overall idea.

There are different options to implement the proposed paradigm. We can learn
a holistic (full-body) pedestrian classifier using dense descriptors [29, 32, 116], or the
pedestrian silhouette [26]. Analogously, we can learn a part-based pedestrian classifier
with dense descriptors [36, 78] (here we would not need to search for parts location
during training, since we can know such locations thanks to the pixel-wise annota-
tions), or using the pedestrian silhouette instead [72]. In all cases, different learning
machines can be used as well. Thus, given such a large amount of possibilities, in [77]
we just followed popular wisdoms that suggests starting from the beginning. In par-
ticular, using virtual pedestrians and background, we trained a holistic pedestrian
classifier based on histograms of oriented gradients (HOG) and linear support vector
machines (Lin-SVM) [24, 25]. We tested such classifier in a dataset, made publicly
available by Daimler AG [32] for pedestrian detection benchmarking in the PPS con-
text. The obtained results were evaluated in a per-image basis and compared with
the ones from a pedestrian classifier trained analogously but using real-world images.
This comparison revealed that virtual and real-world based training give rise to similar
classifiers. In this Thesis we present a more in depth analysis than in [77] by intro-
ducing new descriptors (LBP [119], ExtHaar [32, 78, 79, 84, 114, 115], EOH [68]), new
learning machines (Real-AdaBoost [96]) and new datasets (Daimler, INRIA, Caltech-
Testing [29], ETH-0,1,2 [121], TUD-Brussels [121] and CVC02 [48]); all them used
before in the context of pedestrian detection, so that we can better appreciate the
results of employing virtual-world samples for training.

The results of our experiments show that the same accuracy can be obtained by
training with real-world data than by using virtual-world one (without doing any
special selection of such virtual data, i.e. just driving randomly for acquiring virtual-
world images). This is a very encouraging result from the viewpoint of object detection
in general. Nevertheless, not only good behavior is shared between virtual- and real-
world based training, but also some undesired effects. For instance, let us assume
that, with the purpose of learning a pedestrian classifier, we annotated thousands
of pedestrians in images acquired with a given camera. Using such camera and the
learned classifier we fulfil the requirements of our application (PPS, video-surveillance,
etc.). Later we must use a different camera or we have to apply the classifier in another
similar application/context but not equal. This variation can decrease the accuracy of
our classifier because the probability distribution of the training data can be now much
different than before with respect to the new testing data. This situation is usually
referred to as the dataset shift problem [92] and it is receiving increasing attention in
the Machine Learning community [10, 11, 76, 90–92] due to its applications in areas
as natural language processing, speech processing and brain-computer interfaces, to
mention a few.

The dataset shift has been largely disregarded in Computer Vision, however, re-
cently some authors have started to pay attention to this problem in the context of
object recognition [13,100]. Coming back to the example, in fact, the best we can do
is to annotate the images from the new camera and learn a new classifier [10]. How-
ever, doing such new annotations is a never ending expensive procedure. In order to
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reduce to the minimum new annotations, the scientific challenge consists in perform-
ing some sort of adaptation between the training and testing/application domains.
Virtual-world images, although photo-realistic, come from a different eye than those
acquired with a real camera. Thus, we inherit the dataset shift problem. Accord-
ingly, our proposal of using virtual-world images for learning pedestrian classifiers is
cast in a domain adaptation framework. In [112], we gave a step forward into this
direction, however, only using INRIA dataset and HOG descriptors. In this thesis
we propose other alternatives than in [112] for combining descriptors coming from
real- and virtual-world samples. We term our new learning framework as Virtual-
AYLA2, or just V-AYLA, which stands for Virtual-world Annotations Yet Learning
Adaptively. We will see that V-AYLA will combine our virtual-world based samples
with a relatively few real-world based ones to reach the desired performance.

Ideally, we would like to deploy our vision system in the scenario where it must
operate without human intervention. Then, the system should self-learn how to dis-
tinguish the objects of interest. We are interested in exploring the self-training of a
pedestrian detector for driver assistance systems. Our first approach to avoid manual
labelling consisted in the use of samples coming from realistic computer graphics, so
that their labels are automatically available. This would make possible the desired
self-training of our pedestrian detector. In order to overcome the dataset shift, we
also explore the use of unsupervised domain adaptation techniques that avoid human
intervention during the adaptation process. In particular, we explore the use of the
transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real
worlds for pedestrian detection. We combine our virtual-world based samples with
some real-world based detections to reach the desired performance.

1.1 Objectives

In summary, this PhD dissertation progressively addresses the following questions:

� Can a pedestrian appearance model learnt with virtual-world data work success-
fully for pedestrian detection in real-world scenarios?

� Can we adapt the models learnt in virtual scenarios to the particularities of real
ones?

� Can the learnt models automatically adapt to changing situations without hu-
man intervention?

Bringing light to the mentioned questions are the objectives of this PhD. In the
long term, our goal is to build a pedestrian detection system learnt without human
intervention that automatically adapts itself to the environment changes.

2AYLA name wants to evoke the main character (a Cro-Magnon women) of the popular
saga Earth’s Children by Jean M. Auel.
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1.2 Contributions

Accordingly, in this Thesis we present a pedestrian detector with several novel points:

� We use photo-realistic virtual worlds to learn the appearance model, i.e. using
automatic annotations combined with different state-of-the-art descriptors and
learning machines.

� In order to address the dataset shift problem, we perform domain adapta-
tion techniques using together virtual- and real-world samples during training.
These techniques can be applied to object detection in general. In fact, to the
best of our knowledge, our preliminar work [112] is the first paper considering
the dataset shift problem for developing an object detector.

� We propose an unsupervised domain adaptation method, i.e. human interven-
tion is not required.

� We propose an automatic method for annotating pedestrian bounding boxes
with weak supervision.

1.3 Outline

The rest of the thesis is organized as follows. In Chapt. 2 we review the litera-
ture related to different aspects of our proposals. Chapt. 3 presents and discusses
the results obtained by using different pedestrian detectors based on the traditional
(passive) learning methodology, i.e. assuming that training and testing domains are
equal. This demonstrates that a pedestrian appearance model learnt at virtual sce-
narios can be successfully applied to real images. In Chapt. 4 we present the results
obtained using the V-AYLA methodology. In Chapt. 5 we present unsupervised ver-
sion of V-AYLA and an alternative to the domain adaptation strategy to create new
datasets with low annotation effort. Finally, Chapt. 6 draws the main conclusions
of the presented work. In addition, we include Appendix A for quick access to the
notation used in the Thesis.





Cool World
Ralph Bakshi, film, 1992



Jack Deebs is a cartoonist who is due to be released from jail. His comic book
Cool World describes a zany world populated by doodles (cartoon characters) and
noids (humanoids). What Jack did not realize is that Cool World really does exist,
and a doodle scientist has just perfected a machine which links Cool World with our
world. Intrigued at seeing his creating come to life, Jack is nonetheless wary as he
knows that not everything in Cool World is exactly friendly. (Source: Film Affinity)

In Cool World, there is a real world and a cool world, in the latter, real humans
and cartoons live together. In this Thesis the virtual- and the real-world pedestrians
are used together in the same joint space for training an adapted classifier that can
successfully work in the real world.



Chapter 2

State of the art

In this chapter we review some works that are related to our proposal, thought only in
partial aspects: pedestrian detection, collecting annotations, engineering examples,
and performing domain adaptation. Indeed, to the best of our knowledge there is
neither previous proposals for pedestrian detection in particular, nor for object de-
tection in general, where annotations coming from a photo-realistic virtual world are
used to learn an appearance classifier that must operate in a real-world detection task
(except for our preliminary works in [77,112]). Specially if the virtual world is domain
adapted to the real one.

2.1 Pedestrian detection

Pedestrian detection has produced a vast interest over the last years in the computer
vision community. Thus, many techniques, models, features and general architectures
have been proposed. There exist three recent good surveys in the literature [29,32,49]
that perform an extensive review of the pedestrian detection literature. In this section
we will just review the works related to the object detection stage of the pedestrian
detection pipeline proposed in in [49] (Fig. 2.1). This module receives a set of
Regions Of Interest (ROIs) to be classified as pedestrians or non-pedestrians. Among
the different methods proposed in this stage we focus on the appearance based ones,
which define a space of image features and then run a learning machine on examples
to obtain a classifier.

Several learning machines have been used in the literature, but we can condensate
the most important ones into three groups. Neural Networks (NN) [21] are a bio-
inspired architectures based on layers of neurons that lead to a non-linear classifier.
Support Vector Machine (SVM) [62] is a statistical method that finds a decision
boundary by maximizing the margin between the different classes. Ensemble methods
[65] builds a strong classifier by a combination of weak classifiers. SVM [62] and
the AdaBoost variants [40] are clearly the most widely used in the state of the art

11



12 STATE OF THE ART

Figure 2.1: The general module-based architecture in [49] covers the struc-
ture of most of the systems. It is composed by six modules: preprocessing,
foreground segmentation, object classification, verification, tracking and ap-
plication.

literature but recently the random forest approach [42] is attracting attention [67,107].

Several feature spaces or descriptors have been proposed in the literature as well.
The simplest features were proposed by Gavrila et al. [45] which used grey scale
image pixels with a NN-LRF [21] as a learning machine. Zao et al. [124] used image
gradient magnitudes combined with a NN. Papageorgiou et al. [81] introduced the
Haar wavelets features that compute the pixel difference between two rectangular
areas in different configurations and can be seen as large scale derivatives; they used
a SVM for the classification. Viola and Jones [115] proposed an extended set of Haar
wavelets features combined with an AdaBoost cascade. Gerónimo et al. [46] combined
the Edge Orientation Histograms (EOH) with Haar wavelets in an Real-AdaBoost,
resulting a robust and fast pedestrian detector (See Fig. 2.3).

Dalal et al. [25] presented the Histogram of Oriented Gradients (HOG), a SIFT
[41] inspired feature that combined with a SVM is the reference feature on the state-
of-the-art of pedestrian detection and have been extended by several authors (See
Fig. 2.3). For instance, Zhu et al. [125] proposed to speed up the computation by
changing the SVM by an AdaBoost cascade as classifier and feature selector. Wang
et al. [119] added to [25] a texture descriptor, the local binary pattern (LBP) and an
occlusion handling approach. Maji et al. [75] proposed a simplified version of HOG
features, the multi-level oriented edge energy features, that combined with a SVM
with a fast approximation of the histogram intersection kernel (HIK-SVM). Walk
et al. [116] extended the use of this HIK-SVM with a combination of HOG, color-
self similarity histograms (CSS) and histograms of flow (HOF) features. Enzweilert et
al. [33] present a multilevel Mixture-of-Experts approach to combine information from
multiple features (i.e. HOG and LBP) and cues (i.e. shape, intensity, depth and flow)
with MLP [21] and linear-SVM as expert classifiers. Tuzel et al. [110] propose a novel
algorithm based on the covariance of several measures as features and LogitBoost and
Riemannian manifolds to classify them.

The aforementioned references consider the pedestrians as a whole so they are
called holistic model. Felzenszwalb et al. [37] present an approach based on Dalal’s
HOG detector that consists of a representation of the whole pedestrian and several
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Figure 2.2: Top: HOG features. Bottom: LBP features.

representations of pedestrian parts(e.g. arms, torso, head, etc). This kind of models
are called part-based. The training is done using latent SVM. It is currently one of
the best methods for object detection and has been extended by several authors. For
instance, Pedersoli et al. [86] proposed a coarse-to-fine approach to accelerate the
detector, while Park et al. [85] extended it with a multi-scale approach to explicitly
model pedestrians seen at different distances to the camera.

An extension of [115], the channel features, done by Dollar et al. [28] is recently
attracting much attention because it can be fast computed thanks to the integral
images and the Haar-like filters. They use cues based on orientation, colour and
grayscale. They extended their work by boosting the speed of the previous system [27]
by computing the feature responses at a given scale and approximating the feature
responses at nearby scales. Then, they introduced the crosstalk cascade [29] where
nearby detectors share information to improve the computational efficiency. Finally,
Benenson et al. [12] proposed a system that works at more than 100 fps based on
the ideas of these previous works. In particular, he proposed a combination of depth
information coming from stixels [52] with a fast GPU feature computation and a
cascade approach. Instead of using a multi-scale image pyramid they use a multi-
scale classifier for a fixed number of scales. They follow the procedure of [27] to
approximate nearby classifier scales in between the fixed ones.
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Analysing the results of the different proposals, we realized that the most promis-
ing pedestrian detectors relay on robust local descriptors (i.e. HOG, LBP) in com-
bination with an SVM (i.e. linear-SVM, HIK-SVM) or on integral features easy to
compute (i.e. Haar, EOH, Color) in combination with an ensemble method (i.e.
Ral-AdaBoost, Random Forest). On top of this, part-based models, multi-resolution
models, occlusion handling are build.

2.2 Collecting annotations

Since having good annotated examples is being recognized as a core issue for many
Computer Vision tasks requiring supervised learning, in the last years different web-
based tools have been proposed for collecting them. A well known example is La-
belMe [8] which allows human volunteers to localize image objects of a established
class category by framing them with polygons (see Fig. 2.4). Nowadays, however,
Amazon’s Mechanical Turk (MTurk) [89] probably centralizes the most powerful web-
based annotation force (see Fig. 2.5). MTurk allows researchers to define human
intelligence tasks (HITs: what and how) of different difficulty (e.g. visual annotation
tasks involve from marking points of interest to drawing polygons) to be taken by
human online workers (turkers) which are paid for their work. Thousands of anno-
tations have been already collected by using LabelMe and MTurk. Cost free in the
former case and at a relative low cost in the latter. Unfortunately, as it is argued
in [108], where these web-based tools and others are analyzed, it is a fallacy to believe
that, because good datasets are big, then they are good.

A key reason behind such fallacy is the human factor involved in the annota-
tion task, which poses difficulties for achieving some desirable properties of training
datasets, such as large variety, precision, suitability and representativeness [108]. For
instance, in general, humans performing web-based annotation tasks are not vision
experts and do not have a scientific motivation. The lack of expertise implies that
such human annotators do not know what types of mistakes can be especially prob-
lematic for the posterior machine learning process, they do not know what to do in
special situations that were not included in the annotation instructions, or they can
just misunderstand such instructions [31]. The lack of scientific motivation makes
necessary to offer some economic reguard (e.g. only for less than the 15% of U.S. and
Indian turkers money is irrelevant [99]), but setting the appropriate one becomes a
difficult issue [108]: for underpriced work, workers participate for entertainment or
curiosity, while for overpriced work we can attract not very skilled workers; in both
cases the quality of the annotations can suffer in terms of variety, suitability and
representativeness (e.g. in order to increase the number of performed HITs per time
unit, the turkers could focus on cases easy to annotate, thus, introducing an artificial
bias) and precision (e.g. to increase HITs/time, the annotations could be less accurate
since higher accuracy needs more time). In fact, to detect the presence of low quality
annotations due to such reasons or even due to malicious workers, it is necessary to
collect multiple annotations from the same image/object and assessing annotation
quality from them [108]. Moreover, in the case of MTurk, we have a web-based tool
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Figure 2.3: Top: Haar filters. Example of a filter with parameters (x, y, w, h)
with basic forms of the Extended Haar set and examples of filters that give
high response in regions containing pedestrians. Bottom: EOH features. The
feature is defined as the relation between two orientations of a region.

that is not only focused on annotations for the Computer Vision scientific community,
but for any type of HIT and employer. This introduces a competition among employ-
ers regarding the difficulty of the HIT and the cost, for us being a drawback the fact
that annotations for Computer Vision tasks many times are quite time consuming.
Altogether highlights the question of how to collect data on the internet as non-trivial,
opening a new research area [108]; and, since human work is involved in it with the
respective economic reguard, ethical questions arise too [99].

In fact, since human beings do better a tasks if they are enjoying, some authors
have posed the annotation of video sequences task as a web-based game [73, 74].
However, as argued in [108], designing an entertaining game with the main purpose
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Figure 2.4: LabelMe annotation tool.

of collecting good annotations is difficult in itself.

Note that what we propose in this thesis is to use photo-realistic videogames that
are designed for entertainment, not for doing annotations (though they could be easily
adapted for that), i.e. we would rely on one of the most powerful industries of the
world1 that will be generating and improving such virtual worlds anyway. It is true
that while in [73, 74] annotations are collected from real-world video sequences, we
propose to use photo-realistic virtual worlds which, a priori, can pose more challenges.
However, in addition to the human factor of any of such web-based tools, learning
from annotations on real-world images does not avoid dataset shift.

Note that it is not only that some modern videogames, life simulators and ani-
mation films, are gaining photo-realism, but also the whole simulation pyramid for
creating an artificial life is being considered: visual appearance (shape and photo-
realism), kinematics, perception, behavior and cognition. For instance, see [104] for
the case of animating autonomous pedestrians in crowded scenarios. This means
that from such virtual worlds we could collect an enormous amount of automatically
annotated information in a totally controlled manner. In other words, we could ob-
tain training sets of large scale, variety, precision, suitability and representativeness.
Thinking in the needs of the Computer Vision community, given an image taken in a

1Videogame industry has not noticed current worldwide crisis: its incomes equal those
of film and music industries together.
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Figure 2.5: MTurk annotation plataform. https://www.mturk.com/

virtual world form a virtual camera, intuitively it seems that we could ask for different
types of automatically generated annotations, for instance:

� Scene visual annotations (e.g. for image classification and category recogni-
tion): what type of objects are there inside the image, what type of image is it
(e.g. indoor, countryside, urban).

� Object visual annotations (e.g. for object detection and image segmentation):
where are the objects in the image (bounding box, silhouette, pixel-level anno-
tation), which is its pose, where are their parts, identity the object along the
time (tracks) and its imaged pixels (dense optical flow), even distance from the
virtual camera to the object points corresponding to such imaged pixels (dense
depth; e.g. in [55,70] 3D points from synthetic data are used to build 3D models
of real objects), as well as inter-object visual relationships (e.g. occlusions).

� Non-visual annotations (e.g. for gaining robustness using non-visual cues and
working in overall scene interpretation): sounds, what are we seeing in terms
of natural language, what is the functionality of each object, how objects relate
each other to fulfill a task, etc.

Note that the possibility of exploring and recording such virtual worlds does not
only make possible to obtain the corresponding annotations, in fact, we can design a
priori the storyboard to collect specifically desired annotations: viewpoint, illumina-
tion, appearance of the objects of interest (pose, texture, color, size), backgrounds,
etc. It is true that some types of annotations would be quite precise (e.g. bounding
boxes and silhouettes), while others may have some error inherent to the generative

https://www.mturk.com/
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model behind the virtual world (e.g. pixel-wise annotations for dense optical flow).
However, such errors could be estimated and taken into account, something difficult
to do for human annotations due to subjectivity (in fact, it is not realistic to think
in pixel-wise manual annotations for dense optical flow). Moreover, an additional
benefit is that, given a virtual image, we could have all such types of annotations
simultaneously, something difficult to achieve by relying on human annotations (e.g.
the HITs in MTurk are far more constrained in terms of required annotations).

Certainly, the considerations exposed so far point out web-based annotation tools
as an exciting new field. However, exploring the synergies between modern Computer
Animation and Computer Vision can be also another one. This thesis aims to motivate
such approach. Indeed, so far we have just foreseen the advantages of using virtual
worlds for obtaining good annotations. Obviously, the annotated information is then
acquired in a virtual world, which poses some doubts about its usefulness to learn
models that must operate in the real world. For instance, let us imaging that we are
developing a basic tracker. This tracker uses an appearance model for describing the
objects to be tracked and a motion model for describing how they can move. A priori,
the trajectories of virtual objects projected into a virtual camera can be expected to
be useful for learning the parameters of the motion model. In fact, the equations that
govern the motion of the virtual objects and the equations of the motion model to
learn may be the same. However, regarding the appearance model of the objects the
situation is not that clear a priori, after all human beings can distinguish between an
image acquired in a virtual world from another acquired in the real one, at least in
general. On the other hand, most people assisting to movies or playing videogames set
in modern animated worlds would say that the scenes and lifelike characters are quite
photo-realistic. In fact, is not only a matter of the overall appearance of objects and
environment (silhouettes, pose, etc.), but also in terms of low-level features as texture,
since involved Computer Graphics algorithms try to approach the power spectrum of
real images [88, 97, 98].

In fact, there are some works in the literature that explore the use of virtual
worlds to study the complex relations of human behaviour. [7] presents a framework
to automatically generate synthetic image sequences by designing and simulating
complex human behaviours in virtual environments. This framework is improved
in [38,39] creating an augmented reality framework to increase the complexity of image
sequences used in segmentation, tracking and behaviour analysis in terms of occlusions
and crowds, in a scalable and controllable manner. [5, 6] exploits this framework to
evaluate the performance of tracking algorithms. However these works do not use this
virtual data for training a human detector, they use it for the evaluation of tracking
and behaviour analysis systems. Also, they do not focus on the dataset shift problem.

As a matter of fact, the use of virtual scenarios and virtual reality for training and
evaluating human capabilities is common nowadays (pilots, surgeons, etc.). Neverthe-
less, beyond human observers, the question is if to the eyes of the appearance-based
descriptors that Computer Vision algorithms use for their tasks, virtual-world ap-
pearance is sufficiently close to real-world one. Thus, since visual appearance is the
primary source of information for Computer Vision algorithms, a central question is:
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can we learn appearance models based on realistic virtual-world appearance and use
them successfully in real-world images?. As first proof of concept, in this thesis we
address the yet more specific instance of such question: can a pedestrian appearance
model learnt in realistic virtual scenarios work successfully for pedestrian detection in
real images?

2.3 Engineering examples

In the web-based annotation approach humans annotate the content of the images,
but can not manipulate such context. If the images have not sufficient variability,
the annotations can not add it. Thus, there have been proposed different techniques
which are related to ours one in the sense of using an automatic procedure to generate
the desired pedestrian examples.

In [16] synthesized examples for pedestrian detection in far infrared images (i.e.
images capturing relative temperature) are used. In particular, a rough 3D pedestrian
model encoding the morphology of a person is captured from different poses and
viewpoints. The background is just roughly modelled since it is mainly dark in the
used images. Each combination of pose and viewpoint constitutes a kind of grayscale
template of human relative temperature. Then, instead of following a learning-by-
examples approach to obtain a single model (classifier), a set of templates is used by
a posterior pedestrian detection process based on template matching. However, the
authors admit poor results, since it is difficult to handle variability due to different
clothes, person size, more complex background and, in addition, computational time
increases with the number of templates to be considered.

In [34] the set of examples is enlarged by transforming the shape of pedestrians
(annotated in real images) as well as the texture of pedestrians and background (see
Fig. 2.6). The pedestrian classifier is learnt by using a discriminative approach (NNs
with LRFs, and SVM with Haar). Since these transformations encode a generative
model, the overall approach is seen as a generative-discriminative learning paradigm.
The generative-discriminative cycle is iterated several times in a way that new syn-
thesized examples are added in each iteration by following a probabilistic selective
sampling to avoid redundancy in the training set. The reported results show that this
procedure provides classifiers of the same performance than when increasing the num-
ber of training examples with new manually annotated ones. However, much of the
improvement comes from enlarging the training set by applying jittering to the pedes-
trian examples as well as by introducing more counterexamples. Notice that jittering
does not involve synthesizing pedestrians since it only requires shifting them inside
their framing window, i.e. it is introduced to gain certain degree of shift invariance
in the learnt classifiers. Besides, for applying the different proposed transformations
the overall pedestrian silhouette must be traced, which requires a manual annota-
tion much more labor intensive than standard bounding box framing of pedestrians.
In fact, obtaining manipulated good-looking images of people by performing holistic
human body transformations is in itself an area of research, specially when video is
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Figure 2.6: Example of virtual pedestrian synthesis from [34] original pedes-
trian examples, b) shape variation, c) foreground texture variation, d) - e)
joint variation of shape, foreground and back-ground texture.

involved and thus temporal coherence is required [57].

In [2, 103] it is used a human renderer software called POSER, from Curious
Labs, to randomly generate synthetic human poses for training an appearance-based
human pose recovery system. In this case, these are close human views, usually from
the knees up, and it must be assumed either that human detection has been performed
before pose recovery, or that the camera is framing a human.

In [51] a pedestrian tracker for video surveillance (static camera) are designed and
validated in controlled conditions set in realistic virtual scenarios. In [94] it is also
present a virtual simulation environment based on the Pennsylvania Station in New
York for testing a distributed video surveillance camera network. However, the photo-
realism is quite primitive compared to the videogame used in [51]. In these works the
focus is on demonstrating the usefulness of such virtual scenarios for performance
evaluation and engineering situations of interest. For instance, in [51] the tracking
relies on a standard color-based mean-shift operating in the virtual scenarios during
testing. In this thesis we want also to encourage the use of such virtual scenarios. In
fact, as we will see, we use the same videogame than [51] to collect our virtual data.
However, we go a step beyond because we want that our appearance-based detectors,
learnt in virtual scenarios, can operate in real-world images.

2.4 Domain adaptation

We will formally define domain adaptation in Chapt. 4, but by now let us work
with the intuition already introduced in Chapt. 1: if we learn an appearance model
using images coming from a training camera and typical environment, but then we
change to another testing camera or environment, then we can suffer the dataset shift
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problem, i.e. the typical object poses can change, and the typical backgrounds, as
well as the behavior of the descriptors in which the appearance model relies. In short,
the probability distribution of the training domain may be different from the one of
the testing domain regarding the descriptor space. If that is that case, some sort of
domain adaptation is required.

Domain adaptation is a fundamental problem in machine learning but it only
started receiving attention recently [11,14,15,19,61,90,91,101], specially in computer
vision applications [13, 30, 50, 59, 64, 100, 109]. Indeed, pedestrian detection is a field
where adaptation methods have been already proposed [83,117,118]. However, related
fields, such as class imbalance [58], covariate shift [105], and sample selection bias
[54, 122] has a longer history. There are also some related problems as multi-task
learning [17], active learning [1, 106] and semi-supervised learning [18, 93] that have
been studied more extensively. For an extensive review of the related literature the
reader may to the recent good surveys in the literature: one more general [60], other
focused on computer vision applications [9] and other on transfer learning [82].

As first proof of concept about how to perform domain adaptation for object
detectors, in Chapt. 4 we will use so-called active learning [23], augmented descriptor
space [90], a combination of both, and in Chapt. 5 a first attempt of unsupervised
domain adaptation based on transductive-SVM [63]. To put our work into context, we
briefly summarize some works related to active learning and the use of the augmented
descriptor space.

Aiming to minimize human annotation burden, in [1] an active learning system
called SEVILLE (SEmi-atomatic VIsual LEarning) is used for developing a pedes-
trian detector. Starting by 215 randomly human-annotated pedestrians and sufficient
background samples, it is constructed a pedestrian classifier using an AdaBoost cas-
cade, where the weak rules are decision stumps based on one-dimensional descriptors
referred as YEF (yet even faster). This classifier is applied to unseen videos and
detections are presented to a human oracle that must report if they correspond to
actual pedestrians or to background (false positives). In fact, not all detections are
presented to the oracle. First, there are examined only image windows that inter-
sect a predefined horizon line. This reduces the application of the current classifier to
around 170,000 windows. Then, from these windows, just those classified with a score
falling into the ambiguity region of the current classifier are passed to the oracle. Once
a full video is processed, the new annotated samples together with the previous ones
are used to retrain a new classifier, i.e. the active learning follows a batch scheme.
The process is iterated with new videos until a desired performance is achieved.

In [106] it is also used a similar active learning system, called ALVeRT (Active-
Learning-based VEhicle Recognition and Tracking), to develop a vehicle detector
based on Haar descriptors and a cascade-based AdaBoost learning machine. In this
case, 7,500 examples are randomly human-annotated to obtain a first version of the
vehicle detector (passive phase). Then, 10,000 more annotations are collected by the
human oracle during the active phase.

In these two work, training and testing images are coming from the same camera.
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Thus, active learning is not used as a domain adaptation solution but as a method for
collecting most meaningful samples (selective sampling) while reducing the annotation
burden of pedestrians and vehicles, respectively. Note that from this point of view,
active learning is a kind of bootstrapping counterpart since only difficult examples
(i.e. those in the ambiguity region of the classifiers) must be annotated by the human
oracle. Following the same point of view, training and testing a pedestrian classi-
fier in virtual worlds, we could automatically annotate difficult virtual pedestrians
analogously to a bootstrapping process. In fact, such an approach is used in [34] for
increasingly generating new synthetic samples, though, as we commented before, it
turned out not to be too effective.

However, in this thesis, we are interested in assessing active learning as a method
for domain adaptation. Thus, we will ask a human oracle to annotate some difficult
pedestrians on real images, though the initial classifier is based in a large number of
virtual samples. After, retraining is based on a descriptor space where some samples
come from virtual world (most of them) and others from real world (some of them).
We term as cool world2 such joint descriptor space.

Finally, just to mention that we got the idea of using the augmented descriptor
space technique from [90], where it is applied to many different problems though no
one of the Computer Vision field. However, recently this idea has also been applied
to object recognition as in [13] where web-annotated images are used for training and
Calthech256 dataset for testing; as well as in [100] to account for different lighting and
resolution conditions between real cameras. In this thesis, we challenge augmented de-
scriptor space for a detection task. Moreover, in [13, 100] the domains to be adapted
are both based on real-world images, while here one of the domains correspond to
virtual-world images (the adaptation being performed in the cool world). Addition-
ally, the descriptors involved in our detection task are different than in [13, 100].

2Cool world term is a tribute to the movie with that title. In it, there is a real world and
a cool world, in the latter, real humans and cartoons live together.
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Half-Life 2, the sequel to Half-Life, is a first-person shooter video game and a sig-
nature title in the Half-Life series. Developed by Valve Corporation, it was initially
released on November 16, 2004, following a protracted five-year, $40 million develop-
ment cycle, during which a substantial part of the project was leaked and distributed
on the Internet.

The game was developed alongside Valve’s Steam software. It introduced the
Source game engine and, because of Steam, was the first single-player video game to
require online product activation.

Like its predecessor, Half-Life 2 was met with near-unanimous critical acclaim. It
was praised for its advanced physics, animation, sound, AI, graphics, and narrative.
The game won 39 ”Game of the Year” awards; some publications named it ”Game
of the Decade”. It won the title of ”Game Of The Decade” at the 2012 Spike Video
Game Awards. Half-Life 2 has sold over 12 million copies making it a bestselling PC
game.

(Source: Valve corporation)

In this Thesis we create a virtual city using the Half Life 2 game engine where we
can drive with a virtual car to acquire pedestrian images. With these images we can
train a system able to detect pedestrians in the real world.



Chapter 3

Learning appearance in virtual

scenarios

Detecting pedestrians in images is a key functionality to avoid vehicle-to-pedestrian
collisions. The most promising detectors rely on appearance-based pedestrian clas-
sifiers trained with labelled samples. This chapter addresses the following question:
Can a pedestrian appearance model learnt with virtual-world data work successfully
for pedestrian detection in real-world scenarios? (Fig. 3.1). Our experiments suggest
a positive answer, which is a new and relevant conclusion for research in pedestrian
detection. More specifically, we record training sequences in virtual scenarios and
then appearance-based pedestrian classifiers are learnt using HOG and LBP with lin-
ear SVM, as well as Haar and EOH with Real AdaBoost. We test such classifiers
in several publicly available datasets: INRIA, Daimler, Caltech, CVC02, TUD and
ETH-0,1,2. Each datasets provide real-world images taken from different sources like
personal photo albums or sequences acquired from a moving vehicle. The obtained
results are compared with the ones given by the counterpart classifiers learnt using
samples coming from real images. The comparison reveals that, although virtual sam-
ples were not specially selected, both virtual and real world based training give rise
to classifiers of similar accuracy in some cases while there is a gap for others.

3.1 Introduction

The most promising pedestrian detection methods rely on appearance-based pedes-
trian classifiers learnt from labelled samples, i.e. examples (pedestrians) and coun-
terexamples (background). Having sufficient variability in the sets of examples and
counterexamples is decisive to train classifiers able to generalize properly [22]. Un-
fortunately, obtaining the desired variability in such sets is not easy for pedestrian
detection since we cannot control the real world while recording video sequences. We
can hypothesize that larger training sets are likely to have higher variability, which

25
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Figure 3.1: Virtual-world pedestrian detector framework overview. Can a
pedestrian appearance model learnt at virtual scenarios be successfully applied
to real images?

seems to be confirmed by the fact that classification performance tends to increase
with the size of the training sets in general [3] and for some pedestrian classifiers [79]
in particular. However, while increasing the number of counterexamples is automatic
and effective (e.g. bootstrapping or cascade methods can be applied to gather false
positives and retrain), having a large number of labelled examples is expensive in the
sense that many video sequences must be recorded on-board and a large amount of
manual intervention is required. Moreover, just subjectively adding more examples
does not guarantee higher variability, i.e. it can happen that we are just adding
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Figure 3.2: Virtual image with corresponding automatically generated pixel-
wise groundtruth for pedestrians.

pedestrians too similar to the ones we already had.

The reviewed proposals in Chapt. 2 are appealing in the sense that if we are
able to use a set of automatically generated examples for learning, then we will have
an easier control of its variability and cardinality and avoid human labelling for the
learning phase. The central idea we propose in this chapter is the following. Rather
than using rough morphological models or synthesized real examples, we propose to
explore the synergies between modern Computer Animation and Computer Vision
in order to close the circle: the Computer Animation community has modelled real
world by building increasingly realistic virtual worlds, especially in the field of video
games, thus, can we now learn our models of interest in such virtual worlds and use
them successfully back in real world? In this chapter we focus the challenge in the
appearance of pedestrians captured by a camera working at the visible spectrum (Fig.
3.1).

In the followin we present an in depth analysis of our proposal by testing sev-
eral descriptors, learning machines and datasets used in the context of pedestrian
detection, so that we can better appreciate the effect of employing virtual worlds
for learning. Training with Lin-SVM we assess the behaviour of HOG, and of cell-
structured local binary patterns (LBP) [119]. Since HOG is more related to overall
shape and LBP to texture, following [119] we combine HOG and LBP too. We evalu-
ate HOG and LBP separately instead of only considering the combination HOG+LBP,
because we aim to assess the behaviour of such single descriptors when transferred
from virtual-world images to real-world ones; moreover they are used separately as
experts by some mixture-of-experts pedestrian classifiers [33]. In fact, HOG alone is
the key descriptor of state-of-the-art part-based object detection [36], as well as in
combination with LBP [123]. Additionally, we will study a different set of descriptors
that are also popular for pedestrian detection and remain competitive: the extended
Haar wavelets (ExtHaar) [32, 71, 79, 115] and the edge orientation histograms (EOH)
introduced in [68], as well as the combination of both [20, 47, 48]. Due to their high
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dimensionality an AdaBoost variant is usually employed as learning machine with
these descriptors. We choose Real-AdaBoost [96] since it gave us very good results in
other object detection tasks of the driver assistance context [4, 87].

The experiments we conduct here suggest a positive answer to the previous ques-
tion, which we think is a new and relevant result for research in pedestrian detection.
The classifiers trained on virtual data are evaluated in a per-image basis and com-
pared with the classifiers trained using real datasets. The comparison reveals that
virtual-based training and real-based one give rise to similar classifiers in some cases
while there is a gap for others. Furthermore, given that at this time we do not fine
tune virtual training sets, the obtained outcome opens the possibility of a more cus-
tom design of these sets to obtain better classifiers, e.g. following active learning
approaches as proposed in [34, 37] or developing our own virtual world.

The remainder of the chapter is organized as follows. Section 3.2 details the
datasets, pedestrian detector stages, and evaluation methodology, that will be con-
sistent for the remaining of the thesis. Section 3.3 details the conducted experiments
while Sect. 3.4 presents the results and corresponding analysis. Moreover, Sect. 3.5
present additional experiments in terms of extra datasets and features. Finally, Sect.
3.6 summarizes the conclusions and future work.

3.2 Experimental settings

3.2.1 Datasets

The lack of publicly available large datasets for pedestrian detection in the ADAS
context has been a recurrent problem for years [28,32,49]. The INRIA dataset [25] has
been the most widely used for pedestrian detection, however, it contains photographic
pictures in which people is mainly close to the camera and on focus. Moreover,
there are backgrounds that do not correspond to urban scenarios, which are the most
interesting and difficult ones for detecting pedestrians from a vehicle. Fortunately,
two more adapted datasets for the ADAS context have been made publicly available
recently. One of them is presented by Caltech [28] and the other one by Daimler
AG [32]. Also there exist other datasets that are also commonly used in the literature
like, ETH-0,1,2 [121], TUD [121] and CVC02 [48]. Fig. 3.3 shows some examples of
each dataset.

In order to illustrate our proposal, we focus on two real-world datasets and our
virtual-world one. As generic real-world dataset we have chosen the INRIA (I) one
[24] since it is very well-known and it is still used to evaluate pedestrian detection
references [20, 29, 116, 119]. It contains color images of different resolution (320×240
pix, 1280×960 pix, etc.) with persons photographed in different scenarios (urban,
nature, indoor). As real-world dataset for driving assistance we use the one of the
automotive company Daimler (D) [32], which contains urban scenes imaged by a
640×480 pix monochrome on-board camera at different day times. Both INRIA and
Daimler datasets are found divided into training and testing sets. Our virtual-world



3.2. Experimental settings 29

Figure 3.3: Some of the samples used to train/test from real-world images
(Daimler, INRIA, CVC02, TUD, ETH and Caltech) and virtual-world ones.

dataset (V) is generated with Half Life 2 videogame as detailed in [77]. However, for
this work we have generated new virtual-world color images containing higher quality
textures with anisotropic interpolation, more sequences to extract pedestrians, anti-
aliased pedestrian-free images, and much more variability in urban furniture, asphalts,
pavement, buildings, trees, pedestrians, etc. Emulating Daimler, virtual-world images
are of 640×480 pix resolution. We use this virtual data only for training.

INRIA data includes a set of training images, ℑtr+
I

, with the BB annotation
of 1,208 pedestrians. Daimler training set contains 15,660 cropped pedestrians. The
images containing them are not available (i.e. there is not a ℑtr+

D
). These pedestrians

were generated from 3,915 original annotations by jittering and mirroring. At virtual
world we can acquire a set of images, ℑtr+

V
, of any desired cardinality, with annotated

pedestrians.

Training with more pedestrians could lead to better classifiers a priori. For avoid-
ing such a potential effect, the cardinality of the smallest pedestrian training set (i.e.
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the 1,208 of INRIA) is used in our experiments. In the case of Daimler, firstly we
grouped jittered and mirrored versions of the same annotation, obtaining 3,915 groups
out of the 15,660 provided pedestrians. Secondly, we selected 1,208 cropped pedestri-
ans by randomly taking either zero or one per group. In the case of the virtual-world
pedestrians, we selected 1,208 randomly. In all cases, we generate a copy of each
pedestrian by vertical mirroring. Thus, the number of available pedestrians for train-
ing with each dataset is 2,416. Hereinafter, we term as T tr+

I
, T tr+

D
and T tr+

V
these

sets (of the same cardinality) from INRIA, Daimler, and virtual world, respectively.

Additionally, each dataset includes pedestrian-free images (ℑtr−
V

,ℑtr−
I

,ℑtr−
D

) from
which gathering counterexamples for training. INRIA provides 1,218 of such images
and Daimler 6,744. As with pedestrians, we limit the number of pedestrian-free im-
ages to 1,218 per dataset. Thus, we use all the INRIA ones, for Daimler we randomly
choose 1,218 out of the 6,744 available. For the virtual-world case, we drove through
uninhabited virtual cities, collecting 6,831 pedestrian-free images, from which we ran-
domly selected 1,218. The final number of used counterexamples from each dataset
depends on bootstrapping (Sect. 3.2.3). Hereinafter, we note such sets of counterex-
amples from INRIA, Daimler and virtual world as T tr−

I
, T tr−

D
and T tr−

V
, respectively.

Accordingly, we define the training settings T tr
X

= {T tr+
X

, T tr−
X
}, X ∈ {D, I,V}.

We use the complete INRIA testing dataset (T tt
I
) consisting of 563 pedestrians

in 288 frames and 453 pedestrian-free images. As Daimler testing dataset (T tt
D
) we

use 976 mandatory frames, i.e. frames containing at least one fully visible pedestrian
taller than 72 pixels. Daimler defines non-mandatory pedestrians as those either
occluded, not upright, or smaller than 72 pix high, the rest are considered mandatory
and correspond to pedestrians in the range [1.5m, 25m] away from the vehicle. There
are 1,193 mandatory pedestrians in T tt

D
. Sets T tt

I
and T tt

D
are complementary in

several aspects. T tt
I

images are hand-shotted color photos, while T tt
D

contains on-
board monochrome video frames. This turns out in complementary resolutions of the
pedestrians to be detected as can be seen in Fig. 3.4. Moreover, T tt

D
only contains

urban scenes, while in T tt
I

we found scenarios like city (916 pedestrians), beach (50),



3.2. Experimental settings 31

countryside (138), indoor (87) and snow (17).

3.2.2 Pedestrian Detector

In order to detect pedestrians, we scan a given image for obtaining windows to be
classified as containing a pedestrian (positives) or not (negatives) by a learnt classifier.
Since multiple positives can be due to a single pedestrian, we must select the best
one, i.e. the window detecting the pedestrian. Figure 3.1 illustrates the idea for a
pedestrian classifier learnt with virtual-world data. In the following we briefly review
the employed scanning and selection procedures.

Our scanning approach is based on pyramidal sliding window [24]. It consists in
constructing a pyramid of scaled images, for the range of scales in which we want to
detect the pedestrians. The bottom of the pyramid (higher resolution) is the original
image, while the top is limited by the size of the so-called canonical window (CW, Sect.
3.2.3). At the pyramid level i ∈ {0, 1, . . .}, the image size is ⌈dx/s

i
p⌉ × ⌈dy/s

i
p⌉, being

dx × dy the dimension of the original image (i = 0), and sp a provided parameter.
Opposite to [24], for building levels of lower resolution we perform down-sampling
by using standard bilinear interpolation with anti-aliasing, as in [37]. Then, a fixed
window of the CW size scans each pyramid level according to strides sx and sy, in x
and y axes, resp. We experimentally found that <sx, sy, sp >:=<8, 8, 1.2 > is a good
tradeoff between final detection performance and processing time. This procedure
has some differences regarding usual pedestrian detectors based in the descriptors
tested in this chapter. We have experimentally seen that, in general, the pyramid
with anti-aliasing boosts the performance of the pedestrian detectors based on LBP
and HOG descriptors.

The CW of a classifier trained with T tr
I

is larger than with T tr
D

(Sect. 3.2.3).
Then, if we train with T tr

D
and test with T tt

I
, we down-scale the testing images using

bilinear interpolation with anti-aliasing. If we train with T tr
I

and test with T tt
D
,

following [121] advice we up-scale the testing images using bilinear interpolation. T tr
V

can be adapted to any CW (Sect. 3.2.3).

As a result of the pyramidal sliding window, several overlapped positives at mul-
tiple scales and positions are usually found around the pedestrians. We apply non-
maximum-suppression [66] to (ideally) provide one single detection per pedestrian.

3.2.3 Training process

In this section we focus on one of the most widespread [29,32,49,116] training method-
ology within the discriminative paradigm. We refer to the situation in which only
randomly annotated training examples are used to learn a classifier. Sets T tr

X
,

X ∈ {D, I,V}, are of such a type. We term this approach as passive.

Discriminative learning of a pedestrian classifier requires the computation of de-
scriptors able to distinguish pedestrians from background. As we introduced in Sect.
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Table 3.1: Summary of HOG and LBP feature descriptors parameters.

Descriptor Parameters
Descr. dimensionality⋆

INRIA (I) Daimler (D)

HOG Max-gradient in RGB, 8×8
pix/cell, 2×2 cells/block,
block overlap 50%, 9 bins 0◦

to 180◦, L2-Hys normalization

3,780 1,980

LBP Luminance, 16×16 pix/cell,
1×1 cells/block, block overlap
50%, radius=1 pix, uniform
patterns [80] with thr=4, L1-
sqrt normalization.

6,195 3,245

3.1, HOG, LBP, ExtHaar and EOH are very well suited for this task. However, the
current state of the art is mainly based on HOG and LBP, so, we will focus more on
these two. For such descriptors being useful, a canonical size of pedestrian windows
must be fixed. This CW size, w × h pix, depends on the dataset and the descriptor.

In the case of INRIA, we have w×h ≡ (32+2f)× (96+2f), where f denotes the
thickness (pix) of a background frame around the pedestrian (the so-called context).
Thus, annotated pedestrians are scaled to 32 × 96 pix. Analogously, for Daimler
w × h ≡ (24 + 2f) × (72 + 2f). For INRIA and HOG/LBP descriptors, f = 16 is
of common use in the literature, e.g. this f gives rise to the traditional INRIA CW
of 64 × 128 pix [25]. For Daimler and HOG/LBP, the usual value of f is f = 12,
therefore, w × h ≡ 48× 96 [32]

In the case of the virtual-world pedestrians, we just consider those larger than
32 × 96 pix. Then, when training classifiers for testing in T tt

I
we use w × h ≡

(32 + 2f)× (96 + 2f), while for testing in T tt
D

we use w × h ≡ (24 + 2f)× (72 + 2f).
In both cases we use exactly the same pedestrian annotations for training, but in
the case of Daimler we down-scale them more than in the case of INRIA. Hence,
we actually have different T tr+

V
sets. However, we avoid a more complex notation

for making explicit the differences provided that we have clarified the situation. As
it is done during testing (Sect. 3.2.2) down-scaling uses bilinear interpolation with
anti-aliasing.

Collecting the counterexamples to form the T tr−
X

sets, X ∈ {D, I,V}, involves two
stages. In the first stage, for each example in T tr+

X
we gather two counterexamples by

randomly sampling the respective pedestrian-free images. For doing such a sampling,
the pyramid of each pedestrian-free image is generated and then at random levels
and positions two CWs are taken. Since the cardinality of T tr+

X
is 2,416 and to

form the initial T tr−
X

we have 1,218 pedestrian-free images, we have approximately
the same quantity of examples and counterexamples. In the second step, we follow a
bootstrapping training methodology [25,32,116]. This means that with the initial T tr+

X
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and T tr−
X

sets we train a classifier using the desired descriptors and learning machine.
Then, the corresponding pedestrian detector is applied on the pedestrian-free training
images to extract the so-called hard counterexamples, i.e. false detections. All these
new counterexamples are added to T tr−

X
and, together with T tr+

X
, the classifier is

trained again. We keep this loop until the number of new hard counterexamples is
smaller than 1% of the cardinality of current T tr−

X
set. Following such a stopping

rule of thumb and the initial 1:1 ratio between examples and counterexamples, we
found that one bootstrapping step was sufficient in all the experiments. We forced
more bootstrappings in different experiments to challenge the stopping criteria, but
the results were basically the same because very few new hard counterexamples were
collected. In [116] it is also recommended to follow a strategy such that almost all
counterexamples are collected by the bootstrapping.

Table 3.1 summarizes the parameters used to compute such descriptors. HOG is
computed using the parameters of the original proposal [25]. In the case of LBP, we
introduce three improvements with respect to the approach in [119]. First, we use a
threshold in the pixel comparisons, which increases the descriptor tolerance to noise.
Second, we do not interpolate the pixels around the compared central one given that
it distorts the texture and can impoverish the results. By doing so we could lose
scale-invariance, but in our case it does not matter thanks to the image-pyramid.
Third, we perform the computation directly in the luminance channel instead of
separately computing the histograms in the three color channels, which reduces the
computation time while maintaining the performance. As Lin-SVM implementation
we use LibLinear [95], setting C = 0.01 and bias = 100.

3.2.4 Evaluation methodology

In order to evaluate the performance of the pedestrian detectors we reproduce the
procedure proposed in [29]. This means that we use performance curves of miss rate
vs false positives per image. We focus on the range FPPI=10−1 to 100 of such curves,
where we provide the average miss rate (AMR) by averaging its values taken at steps
of 0.01. Accordingly, such an AMR is a sort of expected miss rate when having
one false positive per five images. This is an interesting assessment point for our
application area, i.e. driver assistance, since such a FPPI can be highly reduced by
a temporal coherence analysis. Besides, all annotated INRIA testing pedestrians and
the mandatory ones of Daimler must be detected (Sect. 3.2.1).

The evaluation procedure described so far is rather standard. However, according
to our daily working experience, even using a good bootstrapping method [116] the
AMR measure can vary from half to even one and a half points, up or down, due to
some random choices during the training process. Of course, such a small variation
does not convert a good detector in bad or the opposite. However, sometimes this is
the performance difference among ranked detection algorithms [29]. Thus, it seems
reasonable to rely on several training executions per experiment. Nevertheless, this
may turn out in an enormous number of costly experiments. Therefore, in this chapter
we have opted for repeating only the most representative experiments. Those are the
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Table 3.2: Evaluation of virtual-world pedestrian detectors (HOG, LBP and
HOG+LBP) over INRIA and Daimler datasets. AMR is shown in % for FPPI
∈ [10−1, 100]. Bold values are the best comparing training sets (T tr

X
,X ∈

{D, I,V}) for fixed descriptor, learning machine, and testing set (T tt
R
,R ∈

{D, I}).

Passive Learning Training (T tr
X
)

Testing (T tt
R
)

INRIA (I) Daimler (D)

HOG
Daimler (D) 38.46±0.45

30.01±0.51
35.62±0.33⋆

INRIA (I)
21.27±0.52
27.86±0.60⋆

41.12±1.01

Virtual (V) 32.47±0.47 30.64±0.43

LBP
Daimler (D) 39.54±0.55

35.07±0.29
50.03±0.36◦

INRIA (I)
18.42±0.53
34.53±0.82◦

35.40±0.70

Virtual (V) 28.87±0.70 45.21±0.49

HOG + LBP
Daimler (D) 32.28±0.47

22.48±0.45
38.04±0.46◦

28.85±0.52•

INRIA (I)
14.35±0.46
23.92±0.81◦

26.22±0.85

Virtual (V) 23.81±0.53 28.27±0.48

(⋆) Dalal et al. implementation [24].
(◦) Wang et al. implementation [119], without occlusion
handling.
(•) Training with the 15,660 pedestrians.

based on INRIA and Daimler datasets trained with HOG and LBP features. For each
of these experiments we repeat the training-testing run five times, which is a moderate
number of repetitions but, as we will see, it is sufficient to run different statistical tests
that will validate our hypothesis of interest. Then, rather than presenting the AMR
of a single train-test run, we present the average of five runs and the corresponding
standard deviation.

3.3 Results

Table 3.2 shows the performance of the experiments HOG, LBP and HOG+LBP over
the INRIA and Daimler datasets: 25 detectors we developed following passive training
and evaluated according to Sect. 3.2.4. Figures 3.5 and 3.6 offer a visual insight by
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Figure 3.5: Evaluation of virtual-world pedestrian detectors (HOG and
LBP) with INRIA and Daimler datasets.

plotting the performance curves. As each detector is trained and tested five times, for
each detector, Table 3.2 shows the average AMR and its corresponding standard devi-
ation, and Figures 3.5 and 3.6 plot average curves with their corresponding standard
deviation intervals. Thus, these experiments involve 125 train-test runs.

3.4 Discussion

Experiments of table 3.2 sustain our claim that the performance of our pedestrian
detectors is boosted by adding a pyramid with anti-aliasing and other improvements
for the LBP. Our current HOG implementation gives better results for {T tr

I
, T tt

I
} and

{T tr
D
, T tt

D
} than the original one [24] (used by us in [77,111]) due to the anti-aliasing in

down-scaling operations. Also, our settings for LBP give better results for {T tr
I
, T tt

I
}
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Figure 3.6: Evaluation of virtual-world pedestrian detectors (HOG+LBP)
with INRIA and Daimler datasets.
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and {T tr
D
, T tt

D
} than the proposal in [119], thanks to the anti-aliasing and the pattern

discretization threshold. When using HOG+LBP we obtain an improvement of almost
10 points for {T tr

I
, T tt

I
} and around 16 for {T tr

D
, T tt

D
}, with respect to [119]. Note that

the better the performance when training and testing within the real data, the higher
the challenge to reach the same performance when training with virtual data and
testing with real data.

We could expect that pedestrian detector trained in a video game could never
be applied into the real world but, far from this, it performs fairly good. Table 3.2
reveals that the standard HOG/LinSVM pedestrian detector trained on virtual data
and tested on Daimler dataset the performs exactly as its counterpart trained on
Daimler training data. However, for INRIA there is a performance gap of 11 points.
Even this is a considerable performance drop the virtual detector stills perform fairly
well regarding the great challenge of training with virtual data. Nevertheless, using
LBP features the performance gap is quite wider 10 points for Daimler and 15 for
INRIA. Even that virtual detectors does not perform as well as real world ones they
provide promising results.

Table 3.2 shows that using train and test sets of different sources (whether real
or virtual) increases the AMR mean even 15 percentual points depending on the
descriptor and dataset. This stands also when training and testing data come from
different real world datasets. To asses this claim, we have checked the statistical
significance of these results. For each descriptor, we consider all the detectors obtained
by the different train-test runs using the two considered real-world training sets. Since
we have tested such detectors on both real world test sets, by paring the obtained
performances we can apply a paired Wilcoxon test [120]. The test reveals that for
HOG, LBP and HOG+LBP testing and training with samples/images of the same
dataset is better than using different datasets in the 99.9% of the cases (p-value
= 0.001, being the null hypothesis that training and testing data are equal). The
means of the improvement are 13.62, 10.35 and 10.73 AMR points for HOG, LBP
and HOG+LBP, respectively.

We also argue that training with virtual-world data exhibits the same problem,
but just as real-world data does. In order to support this claim, we have analysed if
detectors trained with V data behave similarly to detectors trained with real-world
data (using I and D datasets) when tested on a different real world dataset. In
this case, since the compared virtual- and real-world-based detectors use different
training data, all feasible pairings between their performances have to be taken into
account and an unpaired Wilcoxon test (a.k.a Mann-Whitney U test [53]) must be
applied. This test allows to conclude that when using I as testing data, detectors
trained with V data provide better results than training with D data. This is true the
99.6% of the cases (one sided p-value = 0.004). The means of the improvement are
5.94, 10.89 and 8.85 AMR points for HOG, LBP and HOG+LBP respectively. When
the testing dataset is D, the analogous analysis reveals that training with V data is
better for HOG than using I (10.62 points), while for LBP and HOG+LBP training
with I data is better (9.46 and 2.18 points, respectively), with one-sided p-value =
0.004. Therefore, regarding the performance, the virtual-world data is comparable to
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a real-world one.

Usually there are several (possibly simultaneous) reasons giving this fact. For
instance, with HOG, {T tr

V
, T tt

D
} setting offers similar results to {T tr

D
, T tt

D
} one, while

{T tr
V
, T tt

I
} results are much more distant from {T tr

I
, T tt

I
}, probably because our

virtual-world data comes from urban scenes as Daimler data, but INRIA incorpo-
rates other scenarios. For LBP, however, {T tr

V
, T tt

D
} results are much worse than

{T tr
D
, T tt

D
} ones. In fact, {T tr

V
, T tt

D
} performance based on HOG is approximately 15

points better than the LBP one, while HOG and LBP show a difference of around
5 points for {T tr

D
, T tt

D
}. Thus, the textures of the virtual-world somehow differ more

from Daimler images than the shape of the pedestrians. The best performance corre-
sponds to combining HOG and LBP. In this case, for instance, {T tr

V
, T tt

I
} setting is

around 10 points worse than using {T tr
I
, T tt

I
} one. This can be due to the fact that

typical background and pose of virtual-world pedestrians do not include all INRIA
cases (e.g. out-of-city pictures). The result for HOG+LBP and {T tr

V
, T tt

D
} is approx-

imately 2 points1 worse than for {T tr
D
, T tt

D
}, which could come from the pedestrians

clothes (texture/LBP) rather than from pedestrian poses (shape/HOG).

3.5 Additional experiments

For complementing performance assessment, we extend our experiments in two ways:
by adding more datasets and by adding more descriptors. We will follow the experi-
mental settings explained in Sect. 3.2. However, as we have seen that the correspond-
ing standard deviations seems to be stable and less than ±2 to alleviate the number
of experiments we do not repeat each experiment.

3.5.1 Other datasets

To validate our results we will perform the experiments on the remaining datasets
from Fig. 3.3: Caltech, ETH-0,1,2, TUD and CVC02. Next, we point the main
characteristics of these datasets.

Caltech [29] is a popular pedestrian dataset. It contains color images of 640× 480
pix resolution acquired from a vehicle driven through different urban scenarios at
different day times. For training, in [29] it is used INRIA training data but we also
use Caltech training data. In particular, from Caltech training videos we selected
all the non-occluded pedestrians taller than 72 pix but avoiding the inclusion of the

1The best {T tr

V , T tt

D } for HOG+LBP does not correspond to the full set of Daimler
pedestrian examples (15,660) but to our selected set (2,416 ones), i.e. examples without
jittering. Since jittering neither add shape variability nor appearance provided that the
size of the cells we use for HOG and LBP is bigger than the degree of jittering, it may be
just introducing some overfitting. Note that in [32] pedestrian classifiers training is based on
local receptive fields and neural networks (LRF/NN), thus, shift invariance must be explicitly
introduced (e.g. using jittering).
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Table 3.3: Evaluation of virtual-world pedestrian detectors with other
datasets: TUD, ETH0-1-2, CVC02 and Caltech (Reasonable).INRIA and
Daimler. AMR is shown in % for FPPI ∈ [10−1, 100]. Bold values are the
best for a testing set.

Feature Testing (T tt
R
)

Training (T tr
X
)

∆
Real (R) Virtual (V)

HOG

ETH0 58.74⋆ 65.38 -6.64⋆

ETH1 65.51⋆ 69.30 -3.79⋆

ETH2 54.63⋆ 58.97 -4.34⋆

TUD
68.84⋆;
63.34◦

67.98
-0.86⋆;
-4.64◦

CVC02
45.76⋆;
32.30•

43.85
-1.91⋆;
-11.55•

Caltech
47.88⋆;
67.53♮

47.81
-0.07⋆;
19.72♮

LBP

ETH0 66.31⋆ 63.75 2.56⋆

ETH1 64.01⋆ 63.56 0.45⋆

ETH2 73.62⋆ 73.01 0.61⋆

TUD
66.24⋆;
85.66◦

79.13
-12.89⋆;
6.53◦

CVC02
50.66⋆;
33.93•

74.04
-23.38⋆;
40.11•

Caltech
46.04⋆;
57.37♮

56.75
-10.71⋆;
0.62♮

HOG + LBP

ETH0 62.70⋆ 60.78 1.92⋆

ETH1 62.88⋆ 60.41 2.47⋆

ETH2 56.29⋆ 55.03 1.26⋆

TUD
61.29⋆;
80.51◦

68.77
-7.48⋆;
11.74◦

CVC02
41.74⋆;
24.59•

49.62
-7.88⋆;
-25.03•

Caltech
42.18⋆;
53.02♮

46.94
-4.76⋆;
6.08♮

(⋆) INRIA training set. (◦) TUD training set.
(•) CVC02 training set. (♮) Caltech training set.
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Figure 3.7: Evaluation of virtual-world pedestrian detectors on other
datasets: HOG, LBP and HOG+LBP over TUD, ETH-0,1,2, CVC02 and
Caltech.
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same pedestrian many times. This procedure outputs 790 pedestrians, thus, we have
1580 examples after mirroring. Moreover, to keep the same ratio between positive
and negative training data than in previous experiments, we randomly choose 605
pedestrian-free Caltech training frames. We set the CW following INRIA settings,
and we use image up-scaling during testing for detecting reasonable pedestrians (i.e.
most representative ones [29]) taller than 50 pix but not reaching the 96 pix of the
INRIA CW setting.

The ETH dataset [121] was recorded at a resolution of 640× 480 pix resolution,
using a stereo pair mounted on a children stroller. For our particular experiments,
only the left images of each image-sequence are used. The ETH dataset contains three
sub-sequences, representing three different scenarios, which are denoted as ETH0,
ETH1 and ETH2. ETH1 corresponds to the 999 frame ”BAHNHOF” sequence, ETH1
are the 451 frame ”JELMOLI” sequence and ETH1 the 354 frame ”SUNNY DAY”
sequence. We use the updated annotations of [121] as used in Caltech evaluation
framework [29] but we restrict to those pedestrians taller than 72 pix height. Since,
these sequences are only for testing as they do not provide training data, we use the
INRIA one as in [29].

The TUD-Brussels Pedestrian dataset [121] acquired from a driving car. It con-
tains motion pairs recorded in busy pedestrian zones from a hand-held camera at a
resolution of 720× 576 pixels. As in [29] we only use the first frame of each motion
pair. The training data consists of 1092 images with 1776 annotated pedestrians and
192 negative frames. The test set is recorded with a different camera setting and
contains 508 images at a resolution of 640× 480 pixels with 1326 annotated pedestri-
ans. The dataset is challenging due to the fact that pedestrians appear from multiple
viewpoints, at very small scales, many are partially occluded and the fact of the dif-
ferences in the acquisition settings from training and testing. As before we restrict
our evaluation to those pedestrians taller than 72 pix.

CVC02 [49] it is one of our own datasets. It is recorded using a camera based
on a CCD color sensor of of 640 × 480 pix resolution, with a lens of 6 mm of focal.
The camera is installed in the windshield of a car, forward facing the road. From
this dataset we use the classification sequence. The training data is formed by 1016
cropped pedestrians and 154 negatives frames. Additionally, it has 101 positive frames
with 581 annotated pedestrians. From the testing set we use 250 positive frames with
1140 annotations and 150 negative frames where 290 pedestrians taller than 72 pixels.

Table 3.3 shows the AMR performance of HOG, LBP and HOG+LBP for TUD,
ETH-0,1,2, Caltech and CVC02: 45 detectors that we developed following the same
training and evaluation procedure. Figure 3.7 plots the performance curves. For all
these experiments we use INRIA training set as done in [29]. Additionally, for the
ones that has its own training data, i.e. TUD, CVC02 and Caltech, we also train our
models using this data. Thus, these experiments involve 45 train-test runs.

From Table 3.3 we can conclude that for ETH-0,1,2 and TUD datsets the LBP
feature does not perform well. Thus, when combining LBP with HOG the results d
not improve. This fact is mentioned by the datasets authors [29]. As shown in our
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experiments from Table 3.2 the LBP descriptor is very sensitive to changes in the
training/testing data. As for ETH-0,1,2 the training data is INRIA and for TUD
the training data comes from a different camera setting than the testing data this
could cause the problems for the LBP. Besides, for CVC02 and Caltech where the
training/testing data comes from the same setting the LBP performs better. This,
the HOG+LBP configuration performs the best. From hereinafter we will restrict
our ETH-0,1,2 and TUD experiments to HOG features and the CVC02 and Caltech
to HOG+LBP. Classifiers trained and tested on the same dataset gives better results
than the ones trained on INRIA. This reinforces our intuition that training with
datasets of a different nature than the testing ones can produce a performance drop.
In Caltech case, either training with INRIA or virtual-world data performs better
than using the Caltech case training data. This may suggest that such data lacks
variability. However, this is not important for the purpose of this thesis since we can
assume that the baseline performance is the one based on INRIA training data as is
usually done [29].

3.5.2 Other features

In order to illustrate better the behaviour of training with virtual data versus real
one we introduce some extra state-of-the-art descriptors: Haar, EOH and Haar+EOH
and a new learning machine: Real-AdaBoost. We follow the experimental settings
explained in Sect. 3.2 but introducing some changes in the pedestrian detector.

In particular, for ExtHaar and EOH, we experimentally found that reducing the
margin of the canonical window to f = 4 (almost no context) provides better detection
performance. Thus, we discard a part of the background frame for training with
ExtHaar/EOH. Note that, technically, the set T tr+

I
is different for HOG/LBP than

for ExtHaar/EOH. However, since the framed pedestrians are the same and only the
f changes, we do not introduce a more complex notation for making explicit such a
difference. Analogously for T tr+

D
.

Additionally, we use our Real-AdaBoost implementation. For this study we favor
performance instead of processing time, thus, we build a single cascade. Weak clas-
sifiers are decision stumps. Following the maximum of random variables rule [102],
each weak classifier is chosen from a pool of 300 random 1D descriptors, rather than
from all 1D possible descriptors (Table 3.1). By using such a pool, it is warranted
that the selected 1D descriptor is better than the 99% of the rest with a probability
of 95%. We use accuracy (well classified training samples over the total) as the de-
scriptor selection measurement. From all available ExtHaar and EOH 1D descriptors
(Table 3.1) we use only 3,780 for building the strong classifier. We selected such a
number because it is the dimension of the HOG descriptor when working with INRIA,
which gives good results (Sect. 3.3). In fact, setting such a number is not a solved
issue, thus, we did several experiments increasing it. However, we did not obtain sig-
nificative accuracy improvements, while the training and testing computational time
increased a lot.

Table 3.4 summarizes the descriptors parameters of ExtHaar and EOH. Bear in
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Figure 3.8: Evaluation of virtual-world pedestrian detectors with other fea-
tures: Haar and EOH.

mind that we also make use of an image-pyramid (in this case using the so-called
integral image representation at each level) maintaining fixed the CW size, which is
not the traditional procedure [48] but improves the results.

Table 3.4: Summary of Haar and EOH feature descriptors parameters.

Descriptor Parameters
Descr. dimensionality⋆

INRIA (I) Daimler (D)

ExtHaar Luminance, 8 filters from [71]:
non-rotated edge (2), line (4)
and center-surround (1), plus
diagonal (1). Contrast nor-
malized CW (by its standard
deviation).

◦22,848 ◦39,168

EOH Max-gradient in RGB, 6 inter-
polated bins (0◦ to 180◦).

◦42,840 ◦73,440

(⋆) Virtual (V): as I for T tt
I

testing, and as D for T tt
D

testing.
(◦) Only 3,780 are selected for the final strong classifier.

Table 3.5 shows the performance of the extra experiments Haar, EOH and Haar+EOH
over the main datasets: 42 detectors that we developed following the same training
and evaluation procedure. Figure 3.8 plots the accuracy curves.

The largest improvements with respect to common implementations in the liter-
ature go to EOH and ExtHaar (e.g. 52.28 points and 71.78, resp., for INRIA). For
EOH we use 6 bins instead of 4 as in [48]. However, the major advantage is due to
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Table 3.5: Evaluation of virtual-world pedestrian detectors on other features
over INRIA and Daimler datasets. AMR is shown in % for FPPI ∈ [10−1, 100].
Bold values are the best for a testing set.

Feature Testing (T tt
R
)

Training (T tr
X
)

∆
Real (R) Virtual (V)

EOH
Daimler (D) 46.91 51.66 -4.75

INRIA (I)
30.25;
∗76.20

42.75 -12.5

ExtHaar
Daimler (D) 53.14 64.59 -11.45

INRIA (I)
31.19;
⊲99.60

46.86 -15.67

EOH + ExtHaar ♮
Daimler (D) 36.87 41.41 -4.54

INRIA (I) 21.54 37.59 -16.05

(∗) Geronimo et al. implementation [48].
(⊲) Viola-Jones OpenCV impl. [113].
(♮) 3,780-D, with 7,560-D AMR was only 1% lower.

the use of a fixed CW and the pyramidal sliding window procedure, instead of scaling
the filters (ExtHaar, EOH). Note that filter scaling is the approach giving rise to the
usually reported poor performances (e.g. as in [29]). In fact, with our approach,
EOH+Haar/Real-AdaBoost is similar in performance to HOG+LBP/Lin-SVM. Of
course, scaling the filters turns out in much faster detectors, however, the problem
of building fast solutions for pyramidal sliding window is under research [27]. Thus,
here we have favored better detection.

Fig. 3.8 plots the performance of real-AdaBoost based pedestrian detectors
trained on Real and virtual-word data, applied to INRIA and Daimler testing sets.
Comparing the performance of the HOG/linear-SVM and the HaarEOH/real-AdaBoost
we realize that is almost the same. Moreover, we show the results of three dif-
ferent pedestrian detectors based on different sets of features: Haar/real-AdaBoost,
EOH/real-AdaBoost and HaarEOH/real-AdaBoost. The pedestrian detectors trained
on the real datasets clearly outperforms their counterparts trained on the virtual-
world one. The gap of performance is over 10 points.

3.6 Summary

In this chapter we have explored how realistic virtual worlds can help in learning
appearance-based models for pedestrian detection in real-world images. Ultimately,
this would be a proof of concept of a new framework for obtaining low cost precise
annotations of objects, whose visual appearance must be learnt.

In order to automatically collect pedestrians and background samples we rely on



3.6. Summary 45

players/drivers of a photo-realistic videogame borrowed from the entertainment indus-
try. With such samples we have followed a standard passive-discriminative learning
paradigm to train a virtual-world based pedestrian classifier that must operate in
images depicting the real world (INRIA, Daimler, ETH-0,1,2, TUD and Caltech).
Following such a framework we have tested state-of-the-art pedestrian descriptors
(HOG/LBP/HOG+LBP) with Lin-SVM and (ExtHaar/EOH/ExtHaar+EOH) with
AdaBoost. Within the same pedestrian detection scheme, we have employed virtual-
world based classifiers and real-world based ones (Virtual, INRIA, Daimler, CVC02,
ETH-0,1,2, TUD and Caltech). In total 203 train-test runs have been performed to
assess detection performance. We have reached the conclusion that both virtual- and
real-world based training behave in a similar way. This means that virtual-world
based training can provide excellent performance, but it can also produce a perfor-
mance drop as real-world based training when training and testing comes from some-
how different probability distributions. The amount of different pedestrian detectors
and datasets allows to take this conclusion as trustworthy. Therefore, we think that
the results presented in this chapter are relevant for research in pedestrian detection.





The Land of Painted Caves: Earth’s Children
Jean M. Auel, Book, 2011



Earth’s Children is a series of speculative alternative historical fiction novels writ-
ten by Jean M. Auel set circa 30,000 years before present. There are six novels in the
series. The series is set in Europe during the Upper Paleolithic era, after the date
of the first ceramics discovered, but before the last advance of glaciers. The books
focus on the period of co-existence between Cro-Magnons and Neanderthals. As a
whole, the series is a tale of personal discovery: coming-of-age, invention, cultural
complexities, and, beginning with the second book, explicit romantic sex. (Source:
Jean M. Auel)

It tells the story of Ayla, an orphaned Cro-Magnon girl that during her childhood
she is educated by Neanderthals (the clan), the physical appearance of them corre-
sponds to normal humans for her. However, somehow, she recognizes Cro-Magnons
as humans too first time she met them during her youth. Ayla adapts from Nean-
derthals custom to Cro-Magnons one, keeping the best of both worlds. She is a real
survivor in such demanding primitive Earth conditions. Ayla is an icon of robustness
and adaptability. Interestingly, Ayla is the Hebrew name for oak tree. It turns out
also that there is a popular videogame that incorporates Ayla as character.

In this Thesis we develop a domain adaptation framework inspired in the Ayla
character and called V-AYLA. This framework allows to adapt a pedestrian detector
trained with virtual-world data to operate in the real world.



Chapter 4

Domain adaptation in virtual- and

real-world scenarios

The experiments conducted in previous chapter have shown that virtual-world based
training can provide pedestrian classifiers exhibiting high testing accuracy in real
world, but they can also report lower accuracy than expected due to dataset shift
problem and happens when training and testing data are from a different probability
distribution. Thus, it can also appear when the training data comes from real-world
images. Accordingly, we have designed a domain adaptation framework, V-AYLA
(Fig. 4.1), in which we have tested different techniques to collect a few pedestrian
samples from the target domain (real world) and combine them with many examples
from the source domain (virtual world) in order to train a domain adapted pedestrian
classifier that will operate in the target domain. V-AYLA reports the same detection
performance than when training with many human-provided pedestrian annotations
and testing with real-world images of the same domain. To the best of our knowl-
edge, this is the first work demonstrating adaptation of virtual and real worlds for
developing an appearance-based object detector.

4.1 Introduction

Experiments of Chapt. 3 showed that we obtain the similar performance by training
with real-world based samples than by using virtual-world ones, which is encouraging
from the viewpoint of object detection in general. However, not only good behavior
is shared between virtual- and real-world based training, but some undesired effects
too. For instance, let us assume that, for learning a pedestrian classifier, we anno-
tated hundred of pedestrians in images acquired with a given camera. Using such
camera and classifier we solve our application. Say that later we shall use a camera
with a different sensor or we have to apply the classifier in another similar appli-
cation/context but not equal. This variation can decrease the performance of our

49
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Figure 4.1: Domain adaptation framework (V-AYLA:virtual-world
annotations yet learning adaptively) overview. Passive + domain adaptation
training.

classifier because the probability distribution of the training data can be now much
different than before with respect to the new testing data. This problem is referred
to as dataset shift [92] and is receiving increasing attention in the Machine Learning
field [10, 90, 92] due to its relevance in areas like natural language processing, speech
processing, and brain-computer interfaces, to mention a few.

Following the same example, the best we can do is to annotate the images from
the new sensor/application/context and learn a new classifier. However, with the aim
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of minimizing the annotation effort, the challenge consists in adapting the trained
classifier to the new testing/application domain. Virtual-world images, although
photo-realistic, come from a different eye than those acquired with a real camera.
Therefore, dataset shift can appear. Thus, our proposal of using virtual worlds to
learn pedestrian classifiers we cast in a domain adaptation framework that we call
Virtual-AYLA1, V-AYLA in short, which stands for virtual-world annotations yet
learning adaptively (Fig. 4.1). For reaching the desired performance, V-AYLA com-
bines virtual-world samples with a relatively low number of annotated real-world ones,
within what we call cool world2. To the best of our knowledge, this is the first work
demonstrating adaptation of virtual and real worlds for developing an appearance-
based object detector.

As proof of concept, in this chapter V-AYLA relies on active learning for collecting
a few real-world pedestrians, while each original descriptor space as well as the so-
called augmented descriptor space will be used as cool worlds. In fact, we will not use
the classical sampling within the base-classifier ambiguity region. We borrowed the
idea of augmented descriptor space from [90], where it is applied to different problems
though no one related to Computer Vision, a field that has largely disregarded dataset
shift. Fortunately, this problem has also been explored recently in object recognition
[13, 100], although not for a detection task like in this paper. Moreover, in [13, 100]
the domains to be adapted are both based on real-world images and the involved
descriptors are not the ones used for pedestrian detection.

The remainder of the chapter is organized as follows. Section 4.2 details the do-
main adaptation technique including the joint domain, the domain exploration and
the training. Section 4.3 details the conducted experiments while Sect. 4.4 presents
the results and corresponding analysis. Moreover, Sect. 4.5 presents additional ex-
periments in terms of extra datasets and features. Finally, Sect. 4.6 draws the main
conclusions.

4.2 Domain adaptation framework: V-AYLA

In one-class discriminative learning, samples s ∈ S are randomly collected and an
associated label y ∈ Y is assigned to each of them, where S and Y = {−1,+1} are the
samples and annotation spaces, resp. The set of annotated samples T = {(sk, yk)|k :
1 . . . n} is divided in two disjoint sets, T tr and T tt, to train and test a classifier

1AYLA evokes the main character, a Cro-Magnon women, of Earth’s Children saga by
J. M. Auel. Ayla is an icon of robustness and adaptability. During her childhood she is
educated by Neanderthals (The Clan), whose physical appearance corresponds to normal
humans for her. However, she recognizes Cro-Magnons as humans too the first time she met
them. Ayla adapts from Neanderthals to Cro-Magnons customs, keeping the best of both
worlds. She is a real survivor in such demanding primitive Earth conditions. Interestingly,
Ayla is the Hebrew name for oak tree. It turns out also that there is a popular videogame
that incorporates Ayla as character.

2Cool world term evokes the film with that title. In it, there is a real and a cool world,
in the latter real humans live with cartoons.
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C : S → Y, resp. It is assumed a joint probability distribution p(s, y) describing our
domain of interest δ. Elements in T are randomly drawn (i.i.d.) from p(s, y) and,
thus, T tr and T tt too. This is the case of settings {T tr

I
, T tt

I
} and {T tr

D
, T tt

D
} (Chapt.

3).

In practice, there are cases in which samples in T tr and T tt follow different
probability distributions. As mentioned in Sect. 4.1, dataset shift is the generic term
to summarize the many possible underlying reasons [92]. We claim that the loss of
performance seen in Chapt. 3 when using different sets to test and train pedestrian
classifiers is due to some form of dataset shift. For instance, this is our assumption
for settings {T tr

V
, T tt

I
} and {T tr

V
, T tt

D
}. Accordingly, in this section we apply domain

adaptation to overcome the problem.

In domain adaptation, it is assumed a source domain, δs, and a target domain,
δt, with corresponding ps(s, y) and pt(s, y), which are different yet correlated distri-
butions since otherwise adaptation would be impossible. Annotated samples from δs
are available, as well as samples from δt that can be either partially annotated or not
annotated at all. We focus on the so-called supervised domain adaptation [90], where
we have a reasonable number of annotations from δs and some annotations from δt
too. Since we aim at reducing manual annotations for building object classifiers, our
δs is the virtual world V , and δt is the real world R (here R ∈ {I,D}).

As in Chapt. 3, we assess domain adaptation for HOG and LBP separately,
as well as for HOG+LBP using Daimler and INRIA datasets. Also, at the end we
perform some experiments with other descriptors (Haar, EOH and Haar+EOH) and
other datasets (Caltech, ETH0-1-2, CVC02 and TUD).

4.2.1 Virtual- and real-world joint domain

Pedestrian classifiers rely on a descriptor extraction process, D, that transforms the
samples, s, into their respective descriptors (i.e. HOG, LBP, etc.), x = D(s),x ∈
Ω ⊂ ℜd. Therefore, the learning process holds in Ω. In the domain adaptation
framework, some x’s come from δs samples and others from δt samples. Thus, it
arises the question of how to joint both types of x’s in order to learn domain adapted
classifiers. Since our δs is based on virtual-world samples and δt in real-world ones,
we call the joint domain cool world. In this paper we test two cases.

The first one, called ORG, comes from just treating virtual- and real-world de-
scriptors equally. In other words, from the learning viewpoint, virtual- and real-world
samples are just mixed within the original Ω.

The second cool world, AUG, is based on the so-called feature augmentation tech-
nique proposed in [90]. Instead of working in Ω, we work in Ω3 by applying the
mapping Φ : Ω → Ω3 defined as Φ(x) =< x,x,0 > if s ∈ V and Φ(x) =< x,0,x >
if s ∈ R, where 0 is the null vector in Ω, and x = D(s). Under this mapping,
< x,0,0 > corresponds to a common subspace of Ω3 where virtual and real-world
samples (i.e. their descriptors) meet, < 0,x,0 > is the virtual-world subspace, and
< 0,0,x > the real-world one. The rational is that learning using Φ(x) descriptors
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instead of x ones allows the SVM algorithm to jointly exploit the commonalities of
δs and δt, as well as their differences. We refer to [90] for an explanation in terms of
SVM margin maximization.

During training, the full Φ(x) is used. However, during testing all the samples
will come from the real-world (here I or D), therefore, only the corresponding option
of Φ(x) is used. Let w = < wst,ws,wt > be the weighting vector learnt by
the Lin-SVM algorithm, then during testing we have w · Φ(x) = wst · x + wt · x =
x · (wst +wt) = x · ŵ for ŵ = wst+wt. Vector ŵ can be computed once and off-line.
Thus, the computational cost and memory requirements for using AUG during testing
is the same than the one of ORG.

4.2.2 Real-world domain exploration

Let np
t be the maximum number of real-world (target domain) pedestrians a human

oracle O is allowed to provide for training. We test four strategies for annotating
samples from target domain tha O may consider.

Following the first behavior, O annotates np
t pedestrians at random (Rnd). The

rest of behaviors are based on a sort of selective sampling [23]. In particular, there
is a first stage consisting in learning a pedestrian classifier, CV , by using the the
virtual-world samples and passive learning. Such a classifier is used in a second stage
to ask O for difficult samples from the real-world data. Such samples jointly with the
virtual-world ones will be used in a third stage for retraining.

In the second behavior, active learning for pedestrians (Act+), O annotates np
t

difficult-to-detect pedestrians that correspond with the miss detections. Analogously,
we term our third behavior as active learning for background (Act−) because O only
marks false positives. While, the idea behind Act− is not to collect the annotated
false positives, but the right detections (true positives) as provided by the used pedes-
trian detector. In other words, in this case, the BB annotations of the np

t real-world
pedestrians are provided by the pedestrian detector itself. Finally, we term as Act±
the fourth behavior since it is a combination of Act+ and Act−. In this case we allow
to collect 2np

t real-world pedestrians because just np
t are manually annotated with

BBs, which is the task we want to avoid.

Let us define the difficult cases for CV . Given a real-world sample sR, if CV(sR) >
Thr, then sR is classified as pedestrian. Accordingly, in the Act+ case, O will an-
notate real-world pedestrians, s+

R
, for which CV(s

+
R
) ≤ Thr. In the Act− case, those

background samples, s−
R
, for which CV(s

−

R
) > Thr must be rejected by O. For the

Act± both things hold. In general, selective sampling for SVM focus on samples
inside the ambiguity region [−1, 1]. However, underlaying such an approach is the
assumption of a shared train and test domain. Here, due to dataset shift, wrongly
classified samples out of the margins can be important to achieve domain adaptation.
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4.2.3 Training process

Assume the following definitions of training sets:

� Source domain. Let ℑtr+
V

be the set of virtual-world images with automatically
annotated pedestrians, and ℑtr−

V
the set of pedestrian-free virtual-world images

automatically generated as well.

� Target domain. Let ℑtr+
R

be a set of real-world images with non-annotated
pedestrians, and ℑtr−

R
a set of pedestrian-free real-world images.

Take the following decisions:

� Classifier basics. Here we assume Lin-SVM, andD ∈ {HOG,LBP,HOG+LBP}.

� Cool world. Choices are ORG and AUG.

� Oracle. Choices are O ∈ {Rnd,Act+,Act−,Act±}.

The training method we use for performing domain adaptation can be summarized
in the following steps (See Fig. 4.1):

(s1) Perform passive learning in virtual world using {ℑtr+
V

,ℑtr−
V
} and D. Let us

term as CV the passively learnt pedestrian classifier and as DV its associated detector.
Let T tr+

V
be the set of pedestrians used for obtaining CV (i.e. coming from ℑtr+

V
,

scaled to the CW size and augmented by mirroring), and T tr−
V

the set of background
samples (coming from ℑtr−

V
after bootstrapping, CW size).

(s2) Selective sampling in real world. In order to obtain real-world annotated
pedestrians, we run DV on ℑtr+

R
and then apply the O. If O = Act±, then it collects

np
t following Act+ style and np

t more following Act− style (which does not involve
manual pedestrian BB annotations). Otherwise, only np

t pedestrians are collected.
We term as T tr+

R
the set of such new pedestrian samples scaled to CW size and

augmented by mirroring, and as T tr−
R

a set of background samples in CW size, taken
from ℑtr−

R
as done in the passive learning procedure before bootstrapping (thus, the

cardinality of T tr+
R

and T tr−
R

are equal). Note that to follow O we need to set Thr.
For that purpose, we initially select a few images from ℑtr−

R
and take a Thr value

such that after applying DV on the selected images, less than 3 FPPI in average are
obtained. We start trying with Thr = 1 and decrease the value in steps of 0.5 while
such a FPPI holds. This is an automatic procedure.

(s3) Perform passive learning in cool world. Map samples in T tr+
V

, T tr−
V

, T tr+
R

,
and T tr−

R
to cool world. Next, train a new classifier with them according to D. Then,

perform bootstrapping in ℑtr−
R

. Finally, re-train in cool world to obtain the domain
adapted classifier.

When O 6= Rnd, this is a batch active learning procedure [69]. Figure 4.1 sum-
marizes the idea, which, as we introduced in Sect. 4.1, we term as V-AYLA.
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Table 4.1: Evaluation of domain adaptation over INRIA dataset. For FPPI
∈ [0.1, 1], AMR (%) mean and std. dev. are indicated. Bold values remark
the best mean for each real-world testing set.

INRIA Joint
Oracles

Act+ Act−Act∼ Rnd Act±

HOG
ORG 25.65 ± 0.48

27.58± 0.61
26.99± 0.55

27.13 ± 0.71 24.10 ± 0.64

AUG 22.47 ± 1.01
24.19± 0.54
23.95± 1.02

22.94 ± 0.88 21.29 ± 0.85

LBP
ORG 23.21 ± 0.52

24.72± 0.42
24.98± 0.36

23.75 ± 0.73 21.70 ± 0.65

AUG 22.83 ± 0.92
23.31± 0.75
22.08± 0.88

19.73 ± 1.19 18.87 ± 0.88

HOG+ ORG 16.65 ± 0.74
19.34± 0.60
19.61± 0.51

18.56 ± 0.61 15.10 ± 0.91

LBP AUG 14.70 ± 0.63
17.46± 0.63
15.47± 0.89

15.07 ± 1.29 14.15 ± 0.58

Table 4.2: Evaluation of domain adaptation over Daimler dataset. For FPPI
∈ [0.1, 1], AMR (%) mean and std. dev. are indicated. Bold values remark
the best mean for each real-world testing set.

Daimler Joint
Oracles

Act+ Act∼ Rnd Act±

HOG
ORG 28.27 ± 0.41 28.59 ± 0.43 28.58 ± 0.36 26.59 ± 0.51
AUG 26.13 ± 0.66 30.59 ± 1.28 26.30 ± 0.88 27.40 ± 0.65

LBP
ORG 40.25 ± 0.45 41.24 ± 0.51 40.84 ± 0.52 38.54 ± 0.79
AUG 34.69 ± 1.15 36.27 ± 0.89 34.56 ± 1.23 33.18± 1.95

HOG ORG 22.85 ± 0.43 24.15 ± 0.73 23.64 ± 0.57 22.18 ± 0.65
+LBP AUG 21.71 ± 0.73 27.43 ± 1.31 22.20 ± 1.26 23.79 ± 1.01

4.3 Results

In this section we summarize the V-AYLA experiments (300 training-testing runs
in total), and we explain how to simulate the application of V-AYLA on INRIA and
Daimler data for providing fair performance comparisons with respect to passive learn-
ing. Then, as we have done with the passive experiments, we perform experiments
with the most promising techniques on the remaining datasets.

First of all, we shall restrict ourselves to a maximum amount of manually anno-
tated pedestrian BBs from the real-world images (target domain). In the supervised
domain adaptation framework, the cardinality of annotated target samples is sup-
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Table 4.3: Comparison of domain adaptation results. Rows T tr
V

show per-
formance results by training with V data only (from Tables 4.1 and 4.2). In
rows 10%T tr

I
and 10%T tr

D
, show results by training with the 10% of the avail-

able real-world training data of I and D, resp. Rows Act+/AUG reproduce
domain adaptation results from Table 4.1 and 4.2, where the 10% or real-
world pedestrians combined with the virtual-world ones are the same than
for the corresponding 10%T tr

I
and 10%T tr

D
rows. ∆1 rows show the difference

between the mean of corresponding T tr
V

and Act+/AUG. ∆2 rows illustrate
differences between 10%T tr

I
/10%T tr

D
and Act+/AUG.

INRIA (T tt
I
) HOG LBP HOG+LBP

T tr
V

32.47 ± 0.47 28.87 ± 0.70 23.81 ± 0.53

10%T tr
I

30.81 ± 1.51 26.56 ± 1.96 18.89 ± 1.24

Act+/AUG 22.47 ± 1.01 22.83 ± 0.92 14.70 ± 0.63

∆1 10.00 06.04 09.11

∆2 08.34 03.73 04.19

Daimler (T tt
D
) HOG LBP HOG+LBP

T tr
V

30.64 ± 0.43 45.21 ± 0.49 28.27 ± 0.48

10%T tr
D

34.64 ± 1.31 41.13 ± 1.36 30.96 ± 1.59

Act+/AUG 26.13 ± 0.66 34.69 ± 1.15 21.71 ± 0.73

∆1 04.51 10.52 06.56

∆2 08.51 06.44 09.25

posed to be much lower than the one of annotated source samples. However, there
is no a general maximum since this depends on the application. As rule of thumb,
here we want to avoid the 90% of the manually annotated BBs. In particular, since
for both INRIA and Daimler we have used 1,208 annotated pedestrians (i.e. before
mirroring) in the passive learning setting, then we will assume the use of a maximum
of 120 manually annotated BBs from real-world images. Thus, we aim to achieve
the same performance for the following two scenarios: (1) applying passive training
using training and testing sets from the same domain, with 1,208 annotated real-
world pedestrians; (2) applying domain adaptation with a training set based on our
virtual-world data plus a set of 120 real-world manually annotated pedestrians and a
set of pedestrian-free images, both sets from the same domain in which we are going
to perform the testing.

During an actual application of V-AYLA, the 120 real-world pedestrians used
for domain adaptation will change from one training-testing run to another. Thus,
this is simulated in the experiments conducted in this section. However, although
V-AYLA only needs a few manual BB annotations (i.e. 120 here), our experiments
involve 300 training-testing runs, which would turn out in 36,000 manually annotated
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BBs. Therefore, in order to reduce overall manual effort, we have simulated the
annotation of the 120 pedestrian BBs by just sampling them from the ones available
for the passive learning, according to the different oracle strategies. However, note
that during the actual application of V-AYLA all such passively annotated pedestrians
(i.e. the 1,208 ones in each considered real-world data set) are not required in advance
for further oracle sampling. Our experiments, without losing generality, use such an
approach just for avoiding actual human intervention in each of the 300 training-
testing runs. Additionally, in this manner the V-AYLA human annotators are the
same than the ones of the passive approach, thus, removing variability due to different
human expertise.

Hence, in order to simulate V-AYLA on INRIA for O = Rnd, we randomly
sample T tr+

I
to obtain the 120 real-world pedestrians. For Daimler we do the same

using T tr+
D

. For simulating the case O = Act+ on INRIA, we randomly sample
the false negatives obtained when applying CV on T tr+

I
. The desired 120 real-world

pedestrians are collected in such a manner. Daimler case is analogous by using T tr+
D

.

Rnd and Act+ involve manual annotation of pedestrian BBs. However, in Act−
the annotations must be provided by the passively learnt pedestrian detector. INRIA
dataset includes the images (ℑtr+

I
) and annotations from which T tr+

I
is obtained.

Thus, we apply DV to ℑtr+
I

images, and collect the desired number of pedestrian
detections following Act− behavior. Note that in these experiments Act+ and Act−
take samples from the same original pedestrians in ℑtr+

R
. Once such pedestrians are

scaled to the CW size, the difference between those coming from Act+ and Act− is
that, in the former case, the original pedestrians were annotated by a human oracle,
while in the latter case it is the own pedestrian detector which annotates them.
Simulating Act− in Daimler is not directly possible since ℑtr+

D
is not provided, just

the corresponding T tr+
D

is publicly available. In this case, instead of applying DV to
ℑtr+

D
, we apply CV to T tr+

D
. Therefore, instead of Act− we term as Act∼ such an O.

For O = Act±, 240 real-world pedestrians are selected. However, only 120 BBs
are annotated by a human oracle (Act+), the others are collected according to either
Act− for INRIA or Act∼ for Daimler.

In Sect. 4.2.3 we saw that V-AYLA involves finding a threshold value Thr. Ap-
plying the proposed procedure, we found that Thr = −0.5 is a good compromise for
all descriptors and real-world data under test.

Table 4.1 shows the application of V-AYLA on INRIA for O ∈ {Rnd, Act+,
Act−, Act±}, combined with both ORG and AUG. Regarding Daimler (Table 4.2),
we show analogous experiments but replacing Act− by Act∼, which propagates to
Act±. Figure 4.2 plots the curves corresponding to most interesting results.

4.4 Discussion

For performing domain adaptation, source and target domains must be correlated,
i.e. the passive learning stage of V-AYLA must not give random results, otherwise,
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Figure 4.2: Evaluation of domain adaptation. Results for the best cases in
Tables 4.1 and 4.2.
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the adaptation stage cannot improve them. Fortunately, such a stage of V-AYLA
already offers a good approximation as seen in the results of Table 3.2, i.e. virtual-
world samples alone help to learn a relatively good pedestrian classifier for real-world
images3. Thanks to that, the adaptation stage of V-AYLA is able to provide state-
of-the-art results by just manually annotating a few real-world pedestrian BBs (max.
120). In order to support this statement we have run different statistical tests to
compare the results based on just real-world data with the counterparts based on the
analyzed domain adaptation techniques. We explain them in the following.

First, we have compared the different cool worlds, i.e. ORG vs AUG. In particular,
we use a paired Wilcoxon test considering separately the three descriptors times the
four oracles, irrespectively of the real-world testing data set. This turns out in 12 tests.
For eight of them AUG is better than ORG, while in the rest there is no statistically
meaningful difference. In fact, Tables 4.1 and 4.2 shows that in some cases there are
large differences (e.g. for LBP with Daimler) but for the best detectors (i.e. using
HOG+LBP) there is not almost performance difference. However, for the sake of
reducing the number of remaining statistical tests, in the rest of this subsection we
focus on AUG.

Second, we have compared the results of the four oracles using a Friedman test
[44]. As intuitively expected from the results in Tables 4.1 and 4.2, among oracles
Rnd, Act+ and Act± there is no statistically meaningful performance difference.
However, Act− outputs worse results thought still improves the performance of using
virtual-world data alone. At this point we chose the use of either Act+ or Act± since
they have an advantage with respect to Rnd. In particular, it is worth to mention
that the pedestrian examples of both INRIA and Daimler datasets where annotated
by Computer Vision experts in proprietary software environments, thus, they present
good accuracy and variability. Therefore, the Rnd strategy used here is implicitly
assuming good annotators. However, this is not always the case when using modern
web-based annotation tools [31,108]. We believe, that active strategies (Act+, Act±)
have the potential advantage of teaching the human annotator how good quality
annotations should be done, since he/she sees the detections output by the current
pedestrian detector.

We would like to mention that, although the Act− works worse than the other
oracles still is able to provide a step forward in the adaptation (e.g. for INRIA
setting more than 5 percentual points with respect to virtual-world based training
alone) with the advantage of not requiring manual BB annotations. In fact, Act∼
(i.e. simulated Act−) drives to an analogous performance even though it is based
on manual annotations. Note that, in order to do a fair comparison, for respective
V-AYLA train-test runs of Act∼ and Act− the same pedestrians are used, only the
BB coordinates framing them are different. Therefore, given the potentiality of even
reducing more manual annotation we think that the Act− type of oracles (retrained

3”She [Ayla] knew they were men, though they were the first men of the Others she could
remember seeing. She had not been able to visualize a man, but the moment she saw these
two, she recognized why Oda had said men of the Others looked like her.” from The valley of
the horses (Earth’s Children), J.M. Auel.
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for adaptation from self-detections) deserves more research in the future.

UsingWilcoxon unpaired test, we assess if V-AYLA (Act+ and Act±) has achieved
domain adaptation, i.e. the null hypothesis is that classifiers trained according to the
passive method and V-AYLA exhibit the same performance. In the case of Act+,
for HOG V-AYLA is better in 1.12 percentual points with p-value = 0.9097, for LBP
it is worse in 1.89 points with p-value = 0.7337, and for HOG+LBP it is better in
0.35 points with p-value = 0.8501. Therefore, we consider that V-AYLA/Act+ has
reached domain adaptation. The analogous analysis for Act± concludes that for HOG
V-AYLA is better in 1.25 points with p-value = 0.3847, for LBP the same with 1.65
points and p-value = 0.9097, while for HOG+LBP it is worse in 0.50 points with
p-value = 0.3847. Thus, again we consider that V-AYLA/Act+ has reached domain
adaptation.

In Table 4.3 we summarize the performance improvement obtained when adding
the 10% of real-world data to virtual-world one, and viceversa. Note that adding
the 10% of real-world data turns out in improvements from 4.5 percentual points to
even 10.5 (∆1). An analogous situation is observed regarding the contribution of the
virtual data (∆2). In the latter case the improvement for HOG (over 8 points for
INRIA and Daimler cases) is remarkable since more elaborated models like Latent-
SVM part-based ones rely on HOG-style information [36, 37].

In conclusion, V-AYLA allows to significantly save manual annotation effort while
providing pedestrian detectors of comparable performance than the obtained by using
standard passive training based on a larger amount of manual annotations.

4.5 Additional experiments

For complementing V-AYLA performance assessment, we extend our experiments in
two ways: by adding more datasets and by adding more descriptors. To alleviate the
number of experiments, as we did in previous chapter, for the remaining experiments
we do not repeat the experiments several times. As seen in Table 4.3, classifiers
trained with only the 10% of the real data perform clearly worse than our VAYLA
ones, so we avoid these experiments with the extra datasets. However, we perform
such experiments for the extra features to be sure that this still holds for this features.

4.5.1 Other datasets

We extend our experiments with the extra datasets also used on Chapt. 3: Caltech,
ETH-0,1,2, TUD and CVC02. Table 4.4 shows the application of V-AYLA on these
datasets. For all of them we adapt the virtual-world data to the INRIA one. Addi-
tionally, for the ones that has its own training data, i.e. TUD, CVC02 and Caltech,
we also adapt our models using this data. Moreover, we restrict ourselves to just
the most promising configurations. Regarding the O we restrict to Rnd and Act±,
combined with both ORG and AUG. From results of Fig. 3.7 we decided to use HOG
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Table 4.4: Evaluation of domain adaptation on other datasets. For FPPI
∈ [0.1, 1], AMR (%) is indicated. Bold values remark the best accuracy for
each real-world testing set. ∆1 shows the difference between the correspond-
ing T tr

V
and the best V-AYLA result. ∆2 illustrates differences between the

corresponding real trained experiment and the best V-AYLA result.

Test set Feature Joint
Oracles

∆1 ∆2Rnd Act±

ETH0 HOG
ORG 61.66⋆ 60.41⋆

9.43 2.79
AUG 59.40⋆ 55.95⋆

ETH1 HOG
ORG 67.05⋆ 66.64⋆

4.91 1.12
AUG 68.67⋆ 64.39⋆

ETH2 HOG
ORG 55.88⋆ 55.24⋆

6.77 2.43
AUG 52.20⋆ 53.90⋆

TUD HOG
ORG 66.41⋆ 68.79◦ 65.01⋆ 68.19◦

5.22 0.58
AUG 65.64⋆ 62.76◦ 64.88⋆ 64.68◦

CVC02 HOG+LBP
ORG 42.43⋆ 32.11• 41.52⋆ 36.33•

20.04 -4.99
AUG 43.68⋆ 29.58• 45.41⋆ 32.41•

Caltech HOG+LBP
ORG 38.45⋆ 36.20♮ 36.18⋆ 32.19♮

14.75 9.99
AUG 42.55⋆ 39.28♮ 47.80⋆ 41.13♮

(⋆) Adapted to INRIA training set.
(◦) Adapted to TUD training set.
(•) Adapted to CVC02 training set.
(♮) Adapted to Caltech training set.

features for ETH-0,1,2 and TUD datasets and HOG+LBP for CVC02 and Caltech.
Figure 4.3 plots the curves corresponding to most interesting results.

Virtual classifiers adapted to the testing datasets give better results than the
ones adapted to INRIA. This reinforces our intuition that training with datasets of a
different nature than the testing ones can produce a performance drop.

Table 4.4 reveals that our domain adapted pedestrian detectors outperform the
counterpart real based pedestrian detectors (except for CVC02). This emphasises
that our methods perform well for a variety of scenarios. Note that the models
adapted to its own data are better than the models adapted to INRIA one. Most
of the experiments based on models adapted to INRIA with AUG strategy perform
better than the ORG ones. This is consistent with the fact that AUG also performed
better for the INRIA testing (See Table 4.1). Moreover, the models adapted to its
own data following the AUG strategy perform better than the ORG ones. In most of
the experiments the Act± oracle leads to better results than the Rand one. For all
the datasets except CVC02 the performance given by V-AYLA is superior to the real
models. V-AYLA performance clearly improves the virtual one by even 13 points in
some cases. In the CVC02 dataset the gap between virtual and real detectors is 25
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Figure 4.3: Evaluation of domain adaptation on other datasets: HOG+LBP
over TUD, ETH-0,1,2, CVC02 and Caltech.
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Table 4.5: Evaluation of domain adaptation with other features over INRIA
dataset. For FPPI ∈ [0.1, 1], AMR (%) is indicated. Bold values remark
the best accuracy for each feature. ∆1 shows the difference between the
corresponding T tr

V
and the best V-AYLA result. ∆2 illustrates differences

between the corresponding real trained experiment and the best V-AYLA
result.

INRIA Joint
Oracles

∆1 ∆2Act+ Act− Rnd Act±

EOH ORG 35.00 35.66 34.33 31.89 10.89 -1.64

ExtHaar ORG 38.12 38.54 40.33 33.48 13.38 -2.29

ExtHaar+EOH ORG 23.08 27.73 26.16 20.38 17.21 1.16

Table 4.6: Evaluation of domain adaptation with other features over Daimler
dataset. For FPPI ∈ [0.1, 1], AMR (%) is indicated. Bold values remark
the best accuracy for each feature. ∆1 shows the difference between the
corresponding T tr

V
and the best V-AYLA result. ∆2 illustrates differences

between the corresponding real trained experiment and the best V-AYLA
result.

Daimler Joint
Oracles

∆1 ∆2Act+ Act∼ Rnd Act±

EOH ORG 48.47 46.58 47.88 43.98 7.68 2.93

ExtHaar ORG 62.37 57.55 58.75 54.55 10.04 -1.41

ExtHaar+EOH ORG 34.15 36.35 36.21 30.72 10.69 6.15

points that was the only case where V-AYLA could not reach so much adaptation.

4.5.2 Other features

Here we reply our study for the descriptors Haar, EOH and Haar+EOH and the learn-
ing machine Real-AdaBoost. Table 4.5 shows the application of V-AYLA on INRIA
for O ∈ {Rnd,Act+,Act−,Act±}, combined with ORG. Note that AUG a priori can
not be applied to AdaBoost. Regarding Daimler (Table 4.6), we show analogous ex-
periments but replacing Act− by Act∼, which propagates to Act±. Figure 4.4 plots
the curves corresponding to most interesting results.

Fig. 4.4 shows the AdaBoost based experiments in three different plots: Haar,
EOH and Haar+EOH. The plots compare the accuracy of the passive trained classi-
fiers with the domain adapted ones. From these experiments we can draw the following
observations:

� Reducing the training data of the target domain to the 10% decreases the
performance of any trained detector by more than 10 points of AMR.
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Figure 4.4: Evaluation of domain adaptation with other features: Haar and
EOH.
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� All detectors benefit from adding a 10% of random target domain data to the
virtual-world set. This benefit varies from 6 to 10 points of AMR.

� Almost all of the tested Act experiments outperform the Rand and target 10%
baselines. This is remarcable, since in other contexts it has been shown that the
trivial procedure of adding random data performs well and it is usually difficult
to outperform. Our proposed active learning procedures clearly outperform the
random ones.

� For Haar and EOH Act+ and Act- perform equally but requiring Act- less
annotation effort. However, for Haar+EOH Act+ performs better.

� In all the cases Act± outperforms the baselines and the other Act experiments,
even slightly outperforming the target trained pedestrian detector for the most
important case, the Haar+EOH.

4.6 Summary

In this chapter we have designed a domain adaptation framework, V-AYLA, in which
we have tested different techniques to collect a few pedestrian samples from the target
domain (real world) and to combine them (cool world) with the many examples of the
source domain (virtual world) in order to train a domain adapted pedestrian classifier
that will operate in the target domain. Results have shown that following such a
framework, as in previous chapter, we have tested state-of-the-art pedestrian descrip-
tors (HOG/LBP/HOG+LBP) with Lin-SVM and (ExtHaar/EOH/ExtHaar+EOH)
with AdaBoost. Within the same pedestrian detection scheme, we have employed
virtual-world based classifiers and real-world based ones (Virtual, INRIA, Daimler,
ETH-0,1,2, TUD and Caltech). Following V-AYLA we have performed 330 train-test
runs to assess detection performance. This assessment shows how V-AYLA reaches
the same performance than training and testing with real-world images of the same
domain.

Altogether, we consider V-AYLA as a new framework from which more research
can be done for improving pedestrian detection results (including new features, new
models as multi-view/part ones, and ways of building the cool world and collecting
samples), propose unsupervised domain adaptation methods as well as to extend the
idea to the detection of other objects.





Metropolis
Fritz Lang, film, 1927



Metropolis, a visionary and elaborate spectacle by director Fritz Lang is an epic
projection of a futuristic city divided into a working and an elite class. Its exhilarating
climax brings the city to its knees, as the classes clash against each other. In the 21st-
Century, a de-humanized proletariat labors non-stop in a miserable subterranean
city beneath a luxurious city of mile-high skyscrapers, flying automobiles, palatial
architectural idylls, tubes and tunnels. With stunningly inventive special effects,
Lang’s allegorical narrative and architectural vision creates a highly stylized vision of
a not-so-unlikely future (especially for 1926 when the film was made.) As the elite
frolic above the clouds, thousands of miserable workers toil night and day inside the
belly of the gigantic machine that runs the entire city. Metropolis is controlled by a
sinister authoritarian whose son, Freder, rejects his father’s callous philosophy and
attitude towards laborers. Meek though they are, the workers are encouraged by
Maria, a wistful young woman who wills her comrades to embrace patience and silent
strength. Upon discovering her influence upon the workers, a mad scientist kidnaps
Maria and creates a robot in her image that will incite the workers to revolt. As Freder
races against time to save Maria and curtail the damage done by her doppelganger
robot, Metropolis is enveloped in chaos and the classes are brought together in a
breathtaking and highly moralistic climax. (Source: Film Affinity)

In this Thesis we aim to reduce the repetitive and boring work of annotating
bounding boxes in such a way that this work is done by the machine.



Chapter 5

Reducing human annotation

In this chapter we are interested in other alternatives to the supervised domain adap-
tation. Ideally, we would like to adapt our system without any human intervention.
Thus, a first arising question is: Can the learnt models automatically adapt to chang-
ing situations without human intervention? As a proof of concept, we propose the use
of unsupervised domain adaptation techniques that avoids human intervention during
the adaptation process. We term this system as V-AYLA-U (Fig. 5.1). The last open
issue is: How can we avoid the dataset shift without performing domain adaptation?
Accordingly, we assess an strategy to collect samples from the real world and train
a brand new classifier with them, thus avoiding the dataset shift, but in such a way
that no BBs of real-world pedestrians have to be provided. Both proposed methods
report the same detection accuracy than when training with many human-provided
pedestrian annotations and testing with real-world images of the same domain.

5.1 Introduction

Our ideal goal is to totally avoid human intervention and obtain a system which
self-learns how to distinguish objects of interest. Our idea is to remove the oracle of
V-AYLA to totally avoid manual labelling. As a first approach, we propose the use
of an unsupervised domain adaptation technique. In particular, we explore the use of
the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real
worlds for pedestrian detection. We term this system as V-AYLA-U (Fig. 5.1) as it
is our unsupervised version of V-AYLA. V-AYLA-U will combine our virtual-world
based samples with some real-world based detections to reach the desired performance.

An alternative that we want to explore is the use of the virtual-world data for
developing a pedestrian classifier to be used for collecting detections from real-world
images. In this first approach, we still require a human oracle that validates the
detections as right or false. The idea is that at the end of the process we can obtain
a large number of real-world pedestrian BBs without manually annotating them, i.e.

69



70 REDUCING HUMAN ANNOTATION

Figure 5.1: Unsupervised domain adaptation framework overview. We learn
a pedestrian model using automatically labelled virtual-world pedestrians and
background. With this model we detect pedestrians in real-world images.
Some detections will be true positives and others false ones. Since we do not
know which ones are of each type and we do not want human intervention,
we treat all them as unlabelled data. Next, such unlabelled samples and the
virtual-world labelled ones are joined to train a new pedestrian model using
the T-SVM.

the virtual-world-based pedestrian detector provides BBs for us, while the human
oracle just provide easy yes/no-feedback to validate such BBs. In this work we show
that accurate BBs can be obtained through this procedure, saving a lot of oracle time.
Moreover, the procedure is adaptable to work in crowd-sourcing style but allowing to
propose a simpler task less prone to errors.

Section 5.2 presents the V-AYLA-U and its results. Section 5.3 shows the weakly
supervised annotation method and results. Finally, section 5.4 draws the main con-
clusions.
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5.2 Unsupervised domain adaptation

In Sect. 4.2 we applied domain adaptation (DA) to virtual and real worlds, where
the former is considered as the so-called source domain and the latter is the target
domain. In the DA paradigm it is assumed that we have many labelled samples
from the source domain, which in our case are pedestrian and background samples
automatically collected (with label) from the virtual world. Regarding the target
domain, two main situations are considered: (1) in supervised DA (SDA) we collect
a small amount of labelled target-domain data. In Sect. 4.2 we proposed a SDA
approach based on active learning. Obtained results, were totally satisfactory in
terms of the accuracy of the SDA-based pedestrian detectors. However, the use of
active learning implies that a human oracle assists the training. (2) in unsupervised
DA (UDA) we collect a large amount of target-domain data but without labels.

Currently we face the last step towards our self-trained pedestrian detector, i.e.
we propose not to involve humans annotators/oracles during the training process. In
particular in this section we follow an UDA based on transductive SVM (T-SVM) [63].
As we will see in Sect. 5.2.2, for our current image acquisition system, the obtained
performance is comparable to the one given by a pedestrian detector based on human
assisted training. The conclusions of the presented work are summarized in Sect.
5.2.3

5.2.1 Method

We start our study using the HOG descriptor but replacing the Lin-SVM by Lin-
T-SVM (SVM light implementation [62]). If all the provided samples are labelled
Lin-T-SVM is equivalent to Lin-SVM, but if not, it unsupervisedly assigns a label to
the unlabelled samples.

Now, let us assume the following inputs. First, our source domain: ℑtr+
V

denotes a
set of virtual-world images with automatically labelled pedestrians, and ℑtr−

V
refers to

a set of pedestrian-free virtual-world images automatically generated as well. Second,
our target domain: ℑtr

R
is a set of real-world images without labels. Third, a threshold,

Thr, such that an image window is said to contain a pedestrian if its classification
score is larger than Thr. Then, the steps of our UDA are:

(S1) Learning in virtual world with samples from {ℑtr+
V

,ℑtr−
V
}, HOG and Lin-SVM.

We term as CV the learnt classifier and as DV its associated detector. Let T tr+
V

be
the set of pedestrians used for obtaining CV (i.e. coming from ℑtr+

V
), and T tr−

V
the

set of background samples (from ℑtr−
V

). Samples in T tr+
V

and T tr−
V

are assumed to
follow standard training steps of pedestrian classifiers, namely, they are in canonical
window (CW) size, T tr+

V
includes mirroring, and T tr−

V
includes bootstrapped hard

negatives (previous to bootstrapping, we train the initial classifier with the same
number of positive and negative samples). Let C denote the current classifier during
our learning procedure, and D its associate detector. Now we provide the initialization
C← CV (thus, D is DV at the beginning).
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Figure 5.2: T-SVM training overview.

(S2) Pedestrian detection in real world. Run D on ℑtr
R
: only those candidate windows

Wc (provided by the pyramidal sliding window) with C(Wc) > Thr are considered
for the final non-maximum suppression stage of the detection process. Some of these
detections are true positives, while some others are false ones. We do not know, and
treat all them as unlabelled samples. Let us term as T tr?

R
the set of such detections

and their vertically mirrored counterparts down scaled to CW size.

(S3) T-SVM learning in cool world with the virtual-world samples (i.e. T tr+
V

and
T tr−
V

) and the real-world unlabelled ones (i.e. T tr?
R

). Figure 5.2 illustrates the under-
lying idea of the T-SVM training. After this new training we obtain the new C and
D.

This algorithm can be iterated (with the same or new real-world sequences) by
going from (S3) to (S2). However, still we must study the best way of combining
unlabelled samples from different iterations to avoid an excessive grow up of the
number of samples, which could slow down the T-SVM based training. Although,
note that only the HOG of samples of the new iteration must be computed since
the ones of previous iterations can be stored. Additionally, some stopping criteria
should be provided, which could be based on the similarity of consecutive hyperplanes
(classifiers).

5.2.2 Results

Experiments are conducted following the experimental setting explained in Sect. 3.2
and we restrict ourselves to our CVC02 dataset explained in Sect. 3.2.1. Figure
5.3 shows the results of the different experiments we have conducted. Curve CVC-
Train-1 refers to the use of a pedestrian classifier trained only with pedestrian and
background samples from ℑtr

cvc. Of course, for this experiment the pedestrians in ℑtr
cvc

where manually labelled. Curve Virtual refers to the use of only the virtual-world
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Figure 5.3: Evaluation of unsupervised domain adaptation: in parenthesis
the AMR of the conducted experiments.

data for training. Curves UDA correspond to the results according to the proposed
method, i.e. using virtual-world samples and ℑtr

cvc (without labels) for building the
pedestrian classifier. We iterated the learning process three times, the third was not
giving any improvement, so we show just two iterations. From one iteration to the
next, we preserved all the detections as unlabelled samples. Curves SDA correspond
to our Act±approach in Chapt. 4, iterated also until no improvement was achieved,
which happens at third iteration too. Note that SDA involves a human oracle during
training.

5.2.3 Discussion

From results in Fig. 5.3 we see that Virtual performs worse than CVC-Train-1 (4 AMR
points) which we hypothesize is due to dataset shift. When virtual and real world
samples are combined, AMR is around 5 points better than CVC-Train-1 and 9 points
regarding Virtual, which are large improvements (see typical performance differences
among pedestrian detectors in [29]). Iterations pay back in terms of performance
improvement (similar to what happens with bootstrapping). Both approaches, SDA
and UDA, perform similarly. Thus, we could say that virtual data is complementing
well real one. This viewpoint, which applies to both SDA and UDA, corresponds to
label real-world samples and use virtual-world ones to complement them. However,
note that UDA is able to adapt it for operating in real-world images without human
intervention.
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Additionally, to complement the study, we trained a pedestrian classifier fully
based on manual annotations. More specifically, we labelled 1016 pedestrians in
other images taken with our camera and used 150 pedestrian-free images to collect
background samples. Then, we trained the classifier following the same procedure
that we used for training the classifier only based on virtual-world samples. The
curve is shown as CVC-Train-2 in Fig. 5.3. Note, that it gives better results than
our DA approaches (around 2 AMR points), of course, by manually annotating the
double of pedestrians than for SDA. However, in the working range from FPPI=1
to FPPI=0.5, UDA (it2) and CVC-Train-2 shows analogous performance. Now, we
can keep improving UDA by showing more sequences to the learning system, while
for improving CVC-Train-2 more manual annotations would be required and it is
necessary to follow some sort of active learning procedure (as we do in SDA) to avoid
introducing redundant pedestrians.

V-AYLA-U is a great improvement because it removes the human from the adap-
tation process allowing the system to self adapt to new scenarios. However, T-SVM
training is very slow and moreover it requires as parameter an estimation of the ratio
positive/negative samples that it is difficult to adjust. So further research is needed
in the area of unsupervised domain adaptation.

5.3 Weakly supervised annotation of pedestrian bound-

ing boxes

In this section propose a weakly supervised annotation procedure (See Fig. 5.4), i.e.
pedestrian BBs are not manually annotated. We first train a pedestrian classifier using
only virtual-world data. Then, such a classifier collects pedestrian examples from
real-world images by detection. A human oracle rejects false detections through an
efficient procedure (See Fig. 5.5). Thus, at the end of the process we obtain pedestrian
examples without requiring manual annotation of BBs. Real-world examples are then
used to train the final pedestrian classifier. In fact, this procedure is similar to the
oracle Act- but in here we do not retrain with the virtual data and we try to collect as
many pedestrian examples as possible. In this way we skip the dataset shift problem
without using domain adaptation.

In order to learn pedestrian classifiers we employ the HOG/LinSVM. Under these
settings, we show that our weakly supervised approach provides classifiers analogous
to their counterparts trained with examples collected by manually annotating the BBs
of all the available pedestrians.
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Figure 5.4: Weakly supervised annotation framework overview.

5.3.1 Method

Assume the following definitions of training sets:

� Source domain. Let ℑtr+
V

be the set of available virtual-world images with au-
tomatically annotated pedestrians, and ℑtr−

V
the set of pedestrian-free virtual-

world images automatically generated as well.

� Target domain. Let ℑtr+
R

be a set of real-world images with non-annotated
pedestrians, and ℑtr−

R
a set of pedestrian-free real-world images.

Define:

� Classifier basics, i.e. pedestrian description process (D, i.e. features computa-
tion) and base learner (L).
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Figure 5.5: Weakly supervised annotation process. Detections are presented
to the oracle ordered by classifier score and in CW size. The oracle marks
right detections individually or in groups indicated by initial and final clicks.

� Detections, i.e. provide a threshold Thr such that an image window is said to
contain a pedestrian if its classification score is greater than Thr.

Our weakly supervised training consists of the following steps:

(s1) Train in virtual world using D and L with samples from {ℑtr+
V

,ℑtr−
V
}. Let us

term as CV the learned classifier and as DV its associated detector. Let T tr+
V

be the
set of pedestrian examples used for obtaining CV (i.e. coming from ℑtr+

V
), and T tr−

V

the set of background examples (i.e. coming from ℑtr−
V

). Examples in T tr+
V

and
T tr−
V

are assumed to follow standard steps in the training of pedestrian classifiers,
namely, they are in canonical window (CW) size, T tr+

V
includes mirroring, and T tr−

V

includes bootstrapped hard negatives (previous to bootstrapping, the initial classifier
is trained with the same number of positive and negative samples). Let C denote the
current classifier during our learning procedure, and D its associate detector. Now
we provide the initialization C← CV (thus, D is DV at the start).

(s2) Weakly annotating real world. Run D on ℑtr+
R

. Show the detections to the hu-
man oracle (O) ordered by C score, and let O to mark the true detections in groups or
individually (Fig. 5.5), i.e. like when selecting visual items with a graphical interface
of many different modern software applications. Equivalently, we could mark false
detections, however, usually true detections are quite far less than false ones. We
term as T tr+

R
the set of such new pedestrian examples in CW size and augmented by

mirroring. Note that we do not annotate BBs here. This means also that miss detec-
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Figure 5.6: Alignment comparison between detections and annotations.
Ground truth (top row) and detections (bottom row). Left block of five
pedestrians contains detections with classifier score in [−1, 0), those in mid
block are in [0, 1), and those in left block correspond to values ≥ 1. In our
current settings, left and mid blocks are discarded and only the detections of
the right block would arrive to the human oracle for validation (along with
some hard negatives).

tions are not provided by O. In order to collect hard false negatives we can just take
the false detections in ℑtr+

R
(the detections not marked by O). However, for an easier

comparison of our proposal with the standard learning methods used in pedestrian
detection, we run D on ℑtr−

R
in order to collect real-world negative samples. Let us

term such set of samples as T tr−
R

. Moreover, by doing so it is not necessary to mark
all true positives, since not marked detections are not assumed to be false positives.

(s3) Retrain in real world. Train a new classifier C with the pedestrian examples
collected as validated detections, using D and L. The new pedestrian detector D is
now based just on the new C.

During step s2, D is applied for all images in ℑtr+
R

and ℑtr−
R

, then, step s3 is
applied once. During s2 we take one negative example per each positive one (same
cardinality of T tr+

R
, and T tr−

R
) and leave for step s3 collecting more hard negatives

by training with bootstrapping using the ℑtr−
R

pool.

5.3.2 Experimental settings

We follow the experimental settings proposed on Chapt. 3 but restrict ourselves to
HOG/LinSVM to learn our pedestrian classifiers. For evaluating our weakly super-
vised annotation proposal, as training real-world dataset we use the INRIA training
set. It is worth to note that the BB annotations of the INRIA training and testing sets
are considered as precise [108]. We discard the Daimler dataset [32] because it does
not have the training frames that are necessary for this work. As in previous chap-
ters, we use the virtual-world dataset from which training the corresponding classifier.
For testing, in addition to INRIA testing set, we use: Caltech-Testing (Reasonable
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Figure 5.7: Weakly supervision annotation results. Results of detections
(’Det’ 75%) and corresponding manually annotated BBs (’GT’ 75%) from
INRIA training set, for different testing sets. ’Real’: training with the full
INRIA. ’Virtual’: training with the virtual-world data.
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Figure 5.8: Average miss rate at different testing sets when training with
different amounts of validated detections (’Det’) and corresponding manually
annotated groundtruth (’GT’) from INRIA training set. Each bar shows its
average miss rate (%).

set) [29], ETH-0,1,2 and TUD-Brussels [121]. So in total, six testing sets.
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Figure 5.9: Evaluation of weakly supervision annotation effort.

In order to perform fair performance comparison among pedestrian classifiers, for
any training we need to rely on the same imaged pedestrians. Thus, we only consider
those detections whose BB that actually overlap (PASCAL VOC criterion [35]) with
some corresponding INRIA training ground truth BB (manually annotated). Thus,
paired results termed as ’Det’ and ’GT’ correspond to pedestrian detectors whose
classifiers have been trained with the same pedestrians (INRIA training set), but in
one case the BBs of the pedestrians are given by the validated detections (’Det’) while
in the other such BBs are given by the human oracle (’GT’). Fig. 5.6 compares de
’Det’ and ’GT’.

For the experiments presented in Sect. 5.3.3, we also simulate the interaction of
the human oracle. In particular, instead of having a person marking the true positives,
these are automatically indicated to our system thanks to the training ground truth.
This allows to boost the testing of different alternatives at the current stage of our
research. However, in Sect. 5.3.3 we evaluate the annotation cost of our proposal by
performing some experiments with an actual human oracle in the loop.

Note that we decide if an image window is a detection or not according to the
classification score and threshold Thr (Sect. 5.3.1). Here we have set Thr = −1.0, i.e.
the oracle gives yes/no-feedback for windows with classification score ≥ −1.0. Note
that for SVM classifiers this is in the ambiguity region. Thus, in practice most of the
windows presented to the human oracle for yes/no-feedback will be pedestrians, but
some of them will be hard negatives.
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5.3.3 Results

Figure 5.6 provides visual insight about BB localization accuracy for the detections of
the virtual-world-based pedestrian detector applied to the INRIA training set. Figure
5.7 plots the results comparing the performance of the pedestrian detectors resulting
from manually annotated BBs vs the BBs resulting from our method (i.e. using
validated detections) for the same imaged pedestrians. For sake of completeness, the
results of training with both the full INRIA training set and the virtual-world one are
plotted as well. Our validated detections reach almost the 80% of the INRIA training
pedestrians, so we decided to set 75% as the limit of our method for such a training
set. Figure 5.8 plots the average miss rate of the ’Det’ and ’GT’ pedestrian detectors
according to different amounts of training data used, being 75% the maximum.

5.3.4 Discussion

From these results we can draw two main conclusions. On the one hand, the ’Det’
and ’GT’ performances are so close that we think that BBs from validated detections
are as accurate as precise pedestrian BB annotations for developing good classifiers.
The difference would be even more negligible by using the HOG/Latent-SVM method
for learning deformable part-based models [36], since it is able to refine the annotated
BBs provided they are sufficiently precise at the initial stage. On the other hand, the
75% of the annotations seems to already convey the same information than the 100%
since the two case give rise to a very similar performance.

In order to quantify the human annotation effort of our weakly supervised method,
i.e. in comparison with the human annotation of BBs, we provide Fig. 5.9. Note
that annotation time is reduced drastically for the human oracle.

For instance, around only 10 minutes are required to annotate the 75% of the
pedestrians (906) since no BBs must be provided. We experimented manual annota-
tion of pedestrian accurate BBs and found an average required time of 6 seconds per
BB. Thus, annotating the BBs of the 75% would require 90 minutes (9 times more).

5.4 Summary

In this chapter, we presented V-AYLA-U, our first attempt to extended V-AYLA
addressing the challenge of developing a method for obtaining self-trained pedestrian
detectors, i.e. without human intervention for labelling samples. For that we have
proposed an unsupervised domain adaptation procedure based on T-SVM. In the
source domain we have automatically labelled samples coming from a virtual-world,
while the target domain correspond to real-world images from which the proposed
algorithm selects (by detection) unlabelled samples that correspond to pedestrians
and background. Obtained results are comparable to traditional learning procedures
where the pedestrians samples are collected by tiresome manual annotation. However,
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training a T-SVM is slow and also requires a parameter to be adjusted. Therefore,
we leave as an open research line the improvement of V-AYLA-U.

Moreover, we have presented a method for training pedestrian classifiers without
manually annotating their required full-body BBs. The two core ingredients are the
use of virtual world data, and the design of a weakly supervised procedure to validate
detections by yes/no human feedback. Presented results indicate that the obtained
classifiers are on pair with the ones based on manual annotation of BBs. Besides,
the human intervention is highly reduced in terms of both time and difficulty of the
annotation task.





Mercedes-Benz E-Class
Mercedes-Benz PRE-SAFE, 2013



Mercedes-Benz has augmented its assistance systems with new functions which
are now able to support the driver in a substantially broader range of situations.
Using cutting-edge sensor technology, they are able to monitor the area around the
vehicle, providing the driver with warnings and support and reducing his workload
as an intelligent on-board partner. ”Intelligent Drive” is the intelligent combination
of sensors and systems to establish a new dimension of motoring. A crucial aspect is
the networking of all the systems involved - referred to by safety experts as ”sensor
fusion”. Mercedes-Benz is continually enhancing the capabilities of its assistance
systems. The aim is to achieve all-round protection not only for the occupants of a
Mercedes-Benz model, but for other road users as well-.

Mercedes-Benz PRE-SAFE Brake with Pedestrian Recognition has been evaluated
by Mercedes-Benz with the German GIDAS accident data. The evaluation indicates
that this new technology could avoid 6 percent of pedestrian accidents and reduce the
severity of a further 41 percent.

(Source: Daimler press material)



86 REDUCING HUMAN ANNOTATION



Chapter 6

Conclusions

In this Thesis we explored the synergies between modern Computer Animation and
Computer Vision in order to close the circle: the Computer Animation community
has modelled the real world by building increasingly realistic virtual worlds, especially
in the field of video games, thus, we learnt our models of interest in such virtual worlds
and use them back in real world. Since these models suffered the dataset shift problem
we adapted them to operate in the real world. Finally we presented two techniques
for reducing the human intervention: an unsupervised domain adaptation procedure
and a weakly supervised annotation method. This chapter summarizes the main
achievements of our work by revisiting the contributions, strengths and weakness of
the proposed methods. Then, we give a perspective of the research line opened with
this work. Finally, a brief overview of the future research possibilities in the virtual
world generation and domain adaptation techniques are also discussed.

Chapt. 1 introduces the concepts of virtual world and domain adaptation. Here
we specified the Thesis scope, the challenge we aimed to achieve and the questions
we wanted to answer.

In Chapt. 2 we reviewed the works in the literature more related to ours, namely:
pedestrian detection, collecting annotations, engineering examples, and performing
domain adaptation.

Chapt. 3 tried to bring light to the following question: Can a pedestrian appear-
ance model learnt with virtual-world data work successfully for pedestrian detection
in real-world scenarios?. To answer this question we compared the accuracy of our
pedestrian detectors trained with virtual world data with the ones trained with real
one. The comparison revealed that, although virtual samples were not specially se-
lected, in some cases both virtual- and real-world based training gave rise to classifiers
of similar accuracy while there was a gap for others. We realized that this performance
drop happens even when training and testing by using real-world data of different ori-
gin. To the best of our knowledge there are neither previous proposals for pedestrian
detection in particular, nor for object detection in general, where annotations coming
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from a photo-realistic virtual world are used to learn an appearance classifier that
must operate in the real world. This is the first main contribution of this Thesis.
The performance drop that happens when training and testing data from a different
nature is known as dataset shift.

In Chapt. 4 we tried to answer the following question: Can we adapt the models
learnt in the virtual scenarios to the particularities of the real ones? To answer this
question we have designed a domain adaptation framework, V-AYLA, in which we
have tested different techniques to collect a few pedestrian samples from the target
domain (real world) and combine them with the many examples of the source domain
(virtual world). V-AYLA reported the same detection accuracy than the one obtained
by training with many human-provided pedestrian annotations and testing with real-
world images of the same domain. This gives a positive answer to the posed question.
To the best of our knowledge, this is the first work that demostrates adaptation of
virtual and real worlds for developing an appearance-based object detector.

Chapt. 5 further explored other open issues. Ideally, we would like to adapt
our system without any human intervention. Accordingly, we asked ourselves Can
the learnt models automatically adapt to changing situations without human inter-
vention?. To answer this question we doted V-AYLA of an unsupervised domain
adaptation technique that avoids human intervention during the adaptation process.
We term this system as V-AYLA-U. Our preliminary results served as a proof of
concept that gives a positive answer to the question. The last open issue is How
can we avoid the dataset shift without performing domain adaptation? Our approach
consisted on collecting samples by detection with our virtual world classifier from the
real world and train a brand new classifier based only on collected examples, thus
avoiding the dataset shift. After, a human oracle rejected the false detections by an
efficiently weak annotation. Finally, a new classifier was trained with the accepted
detections. We showed that this classifier is competitive with respect to the counter-
part trained with samples collected by manually annotating hundreds of pedestrian
bounding boxes.

6.1 Future Perspective

Recently several automotive companies have developed their own pedestrian detec-
tion systems and started to on-board them in commercial vehicles. Although the
technology for developing such systems already exists, the system should work under
high performance requirements in any circumstances. To contemplate all these pos-
sible scenarios the system has to be trained with an enormous amount of annotated
data. Usually, a vehicle fleet is sent to record images during the whole year and this
data has to be annotated to train and validate the system. Despite acquiring and
analysing this data is very expensive and time consuming, it presents a major chal-
lenge: what happen if the system has to work in a different scenario? e.g. changes in
the acquisition system, environment, pedestrian cloth style. Then the dataset shift
problem may appear and domain adaptation techniques can play an important roll
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to overcome it. Moreover, it arises another question: Could we develop a system that
after an initial training it automatically self adapts to new scenarios?

This Thesis is a proof of concept that such systems can self adapt to new scenarios
but still further research is required. In the following we point some aspects that
require further research.

Improved virtual worlds: Video game industry has been blooming since last
decade and is one of the economic activities that has not realized about the economic
crisis. The realism of the video games in terms of graphics and artificial intelligence
is reaching to be completely or almost indistinguishable from reality. However, in this
Thesis we used the Half life 2 video game that was created in 2004. So, we expect that
using more realistic video games we could achieve better results. In addition, from
these games we could acquire ground truth for different applications such as pixel level
segmentations for semantic segmentation and scene understanding algorithms, depth
information for stereo algorithms, motion for tracking and optical flow algorithms,
etc.

State of the art pedestrian detectors: In this thesis we focused on holistic
pedestrian detectors that are the basis of the state-of-the-art pedestrian detectors
such as part-based or patch-based ones. We are already working on extending this
work to such detectors as can be seen in the list of our publications.

Domain Adaptation: Domain adaptation is a fundamental problem in ma-
chine learning but it only started receiving attention in computer vision applications
recently. Accordingly, it is a great research opportunity, specially the unsupervised
methods.

Our vision of future ADAS: We expect that self-trained and self-adapted sys-
tems will attract much attention in the next years. These systems will automatically
learn new concepts and adapt to new environments cutting down the tedious work of
human annotation.

El trabajo que puede hacer una máquina es inhumano que lo haga una persona

The work that can be done by a machine is inhuman to be done by a person

Joana Sobrino
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Appendix A

Notation

Symbol Meaning

D,I,V Daimler, INRIA, Virtual-world domains, resp.

CW Cannonical Window

X Variable used for denoting a virtual- or real-world domain,
in particular, X ∈ {D,I,V}.

R Variable used for denoting a real-world domain, in particu-
lar, R ∈ {D,I}.

tr, tt Used as upper indices qualify training and testing sets (of
either samples or images), resp.

+,− Used as upper indices qualify pedestrian and background
sets (of either samples or images), resp.

ℑtr+
X

Training set of images from X , with annotated pedestrians.

ℑtr−
X

Training set of pedestrian-free images from X .

ℑtr+
R

, ℑtr−
R

Analogous to ℑtr+
X

and ℑtr−
X

, but restricted to real-world
(R) domains.

T tr+
X

Training set of pedestrian cropped windows from X .

T tr−
X

Training set of backg. cropped windows from X .

T tr+
R

, T tr−
R

Analogous to T tr+
X

and T tr−
X

, but restricted to real-world
(R) domains.

T tr
X

Pair {T tr+
X

,T tr−
X
}.

T tr
R

Pair {T tr+
R

,T tr−
R
}.

T tt
R

Set of testing images, i.e., with annotated pedestrians
(groundtruth) from R.
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Symbol Meaning

CV Pedestrian classifier (passively) trained with only virtual-
world data.

DV Pedestrian detector based on CV .

Rnd Human oracle that annotates pedestrian bounding boxes
randomly.

Act+ Human oracle that annotates pedestrian BBs (false nega-
tives from target domain training set).

Act− Automatic oracle that annotates pedestrian BBs by detec-
tion (positives from target domain training set, according to
the detection threshold).

Act∼ Substitutes Act− when the original real-world images are
not available for pedestrian detection, but cropped windows
are available for classification. While Act− can be used in
practice, Act∼ is just an approximation used here to work
with the publicly available training data of D.

Act± Combination of Act+ and Act− (Act∼ for Daimler).
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Cool world: domain adaptation of virtual and real worlds for human detection
using active learning. In NIPS Domain Adaptation Workshop: Theory and
Application. Granada, Spain.
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Awards

� Google award for the article ofCool world: domain adaptation of virtual and real
worlds for human detection using active learning in NIPS Domain Adaptation
Workshop: Theory and Application (2011)

� ICMI Doctoral Consortim award for the article of Virtual Worlds and Active
Learning for Human Detection in ACM International Conference on Multimodal
Interaction (2011)



96 LIST OF PUBLICATIONS



Bibliography

[1] Y. Abramson and Y. Freund. SEmi-automatic VIsuaL LEarning (SEVILLE):
a tutorial on active learning for visual object recognition. In IEEE Conf. on
Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005.

[2] A. Agarwal and B. Triggs. A local basis representation for estimating human
pose from cluttered images. In Asian Conf. on Computer Vision, Hyderabad,
India, 2006.

[3] A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition: A review.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.
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